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Abstract— Evolutionary systems such as Learning Classifier that each capture aspects of the problem space, and explore
Systems (LCS) are able to learn reliably in irregular domairs,  splutions using recombinations of existing features, and a
while Artificial Neural Networks (ANNs) are very successfulon 5. of reinforcement learning to capture the relationship
problems with an appropriate gradient. This study introduces a bet feat d t Th h b
novel method for discovering coarse structure, using a teafique e_ween eatures a_n 9“ comes. e_se approac es_ can be
related to LCS, in combination with gradient descent. The reliable for addressing irregular domains, however withou
structure used is a deep feature network, with a number of the precision seen in gradient descent methods. This study
properties of a higher level of abstraction than existing ANNs,  introduces the use of gradient descent, with a feature mktwo
for example the network is constructed based on co-occurrare that is constructed using population-based methods telate
relationships, and maintained as a dynamic population of to L ina Classifier Svst Th fad feat
features. The feature creation technique can be considered 0 eam'_ng_ assiner _ys ems. € use of a deep feature
a coarse or rapid initialization technique’ that constructs a network is |ntr0duced, in contrast to the redundant feature
network before subsequent fine-tuning using gradient descé.  representation commonly used by evolutionary approaches.
The process is comparable with, but distinct from, layer- This allows the precision of gradient-based learning used i
wise pretraining methods that construct and initialize a dep ANNS to facilitate the learning provided by the LCS learner.

network prior to fine-tuning. The approach we introduce is In addition thi id | ina techni that
a general learning technique, with assumptions of the dimen n addiion this provides a coarse learning technique tha

sionality of input, and the described method uses convolved allows capturing structure in irregular domains, before th
features. Results of classification of MNIST images show an use of gradient-descent to fine tune the solution.

average error rate of 0.79% without pre-processing or pre-  The objective of a deep feature network is to capture
training, comparable to the benchmark result provided by gy ctyre of the environment being observed. In evolutipna

Restricted Boltzmann Machines of 0.95%, and 0.79% using . - -
dropout, however based on a convolutional topology, and as SYSEMS, structure is captured in building-blocks [6], it

such our system is less general than RBM techniques, but more are shared between classifiers in the population. Building-
general than existing convolutional systems because it de@ot  blocks are copied between classifiers and stored redugdantl
require the same domain assumptions and pre-defined topolgg  rather than being maintained in a shared manner where
Use of a randomly initialized network provides a much poorer  fa51res are re-used by multiple classifiers. Relatiorsship
result (1.25%) indicating the coarse learning process play between building-blocks and constituent components are no
significant role. Classification of NORB images is examined, .
with results comparable to SVM approaches. Development of Preserved, and as such are best considered a shallow rather
higher level relationships between features using this appach  than deep representation.
offers a distinct method of learning using a deep network  Deep feature networks have been captured in a number of
of features, that can be used in combination with existing artificial Neural Network designs. In approaches such as [8]
techniques. . . .
the first layer of the network captures basic properties such
|. INTRODUCTION as oriented edges, while features have been demonstrated in
A number of paradigms have been proposed for extractirgybsequent layers that capture increasingly complex-struc
higher order features from an observed environment and cdpfe, such as features resembling eyes and mouths, while
turing its underlying structure. These include Convolnéib Vviews of faces can be identified in higher levels. Recog-
Neural Networks (CNNs) [1], Deep Belief Networks [2] andnizable larger structure is not commonly addressed, and
Learning Classifier Systems [3]. in [8] this structure is presented as a demonstration, while
Artificial Neural Networks operate using gradient descentlassification results are based on the simpler first fewrtaye
of an objective function, allowing parameters of the systemf the network.
to be gradually updated to improve accuracy as new instancesCapturing hierarchical structure has been done very effec-
are observed [4]. Recent techniques such as pre-trainjng fively using generative methods on a small number of layers,
give a variation to this approach, where learning is first-corand with limited input dimensions, however further inciesas
ducted using an alternative objective, to reconstructmiese in depth and complexity of representation have not been
inputs, before training the network to capture classifisei explored, and do not appear to provide immediate practical
using gradient descent methods. This approach is very ac@agvantages. Current approaches using fully-connecteuday
rate and reliable on particular problem sets, however caa hasuch as Restricted Boltzmann Machine [2] and Autoencoder
difficulty in domains with an irregular objective function. networks [5], do not appear to be able to scale to capture
Learning Classifier Systems [3], and other forms of evdarger and more abstract representations. The development
lutionary algorithms, operate using a population of feasur of deep structure is a key aspect of deep network design,



although limited examination of learning based on mor&arning rules, governed by recognizable local properties
flexible part based representations and image grammars lsasne cases this implies specialization of design, to captur
been shown. A second objective of this study is to introduceffects specific to a domain such as vision specific propertie
a representation that captures a deep network of featuresuaed by CNNs, however there are many common traits in
a higher level of abstraction than used in existing neurdiligher level processes, suggesting they reflect more denera
networks, as a step towards the development of a featysenciples of learning [13].

network capturing deeper and more varied part-based rela-In this study an independent learning process is used, to al-
tionships. This objective is connected to the introductién low the development of features, according to locally define

a coarse learning process to construct the feature netasrk,processes that act on a coarse scale. This provides a means
the representations used by Learning Classifier Systems afeconstructing feature relationships based on obsemstio
based on a more abstract representation than connectionising co-occurrence relationships, and the maintainafice o
systems. a population of features according to reinforcement with
usé. Learning at a coarse scale allows the development
o of more abstract properties, such as grammar-based and
Artificial Neural Networks (ANNs) are based on local|ggica) relationships of higher level features. This prms

processing and connectivity, reflecting to some degree relg, important step towards the broader goal of capturing
tionships between neurons in the brain. Cognitive properti modularity in artificial learning.

identified at the neural level have provided practical bésefi

for ar_tificial systems, suph as the _model of structures of|| g F-ORGANISING SYSTEMS AT HIGHER LEVELS OF

the visual cortex used in Convolutional Neural Networks ABSTRACTION

(CNNs) [1]. This is based on a model of simple and complex

cells such as that in [9], and reflects aspects of visual Learning Classifier Systems [3] are self-organising sys-
processing that act in a bottom-up manner. tems, that act on properties at a higher level of abstraction

In addition to properties of interactions between indieitlu than ANNs. They are considered ‘evolutionary’ systems
neurons, recognizable processes have been found thatact @md are typically based on Genetic Algorithms, however
broader scale, as captured in cognitive models such as ACTtfey were originally conceived as abstractions of cogaitiv
[10]. These models describe systematic relationshipséstw processes [14]. Learning Classifier Systems use a form of
identifiable structures, although the described structsre reinforcement-based learning, both in terms of Q-learning
abstract and identified from behavioural observations, arsdyle Reinforcement Learning to update predictions onimult
there is often limited understanding of the manner in whicktep problems, and Psychology related reinforcement to
they relate to processes at the neural level. Models of visuafluence maintenance of the populafipand as such it is
cognition also describe more complex interactions than thgossible to view these algorithms in the context of cogni-
bottom-up effects captured in CNNs. These include effectye processes. Connections between Reinforcement Lrearni
that occur at specific timescales, such as early interjwatat methods and cognitive processes are well established [15],
of context, and means of providing top-down facilitationand there are further similarities between the population
to influence interpretations [11]. Each of these procességinforcement methods used and models of abstract cognitiv
are characterized by independent learning objectives, apgocesses, such as reinforcement of memory traces [16],
processes that act on a broader scale than the interact[df]. The term ‘Evolutionary Computing’ is commonly used
between neurons at a local level. to describe this family of techniques, and the terminology

Aside from the use of back-propagation, further indeperwill be maintained to refer to LCS and related systems,
dent processes have been addressed in deep learning systéwever the evolutionary paradigm is not significant fos thi
such as the use of pre-training to identify features basedudy. ‘Evolutionary’ systems can be effective and rekabl
on unsupervized learning, and top-down effects in Deefor optimization on irregular learning tasks, providing an
Belief Networks [2], that capture influences on lower levegffective form of coarse learning, however without the same
activations as a result of activation properties of higlegel capabilities of fine-tuning available to gradient-desdesed
features. methods.

The top-down connections in Deep Belief Networks ad- The implementation provided in this study addresses the
dress a form of top-down effect, based on direct relatigrsshi use of reinforcement based methods to capture coarse learn-
between elements in neighbouring layers. More detailddg in a self-organising deep network. This allows more
models describe the role of context in the interpretatioabstract properties of learning to be captured, based @h loc
of details [11], where contextual interactions are largeljearning rules acting on a different scale, alongside gradi
governed by associative interactions [12], and act usindescent methods that allow fine-tuning.
recognizable local rules. Such processes play a significant
role in allowing the rapid identification of relevant object !Note that the term ‘reinforcement’ used here is more closelgted
from a vast collection of knowledge. Capturing such effect& the use of the term in Psychology, such as relating to gesafment
. e . - . of memory traces, rather than the ‘reinforcement’ refeieih Computer
in artificial systems requires the ability to introduce E88eS  science literature relating to Reinforcement Learning.
that act on different scales, and according to independenghowever the term ‘fitness’ is commonly use in GA based systems

A. Deep feature networks



The coarse learning process presented constructs a formmim population size of atomic and composite features.
grammar of features, creating new features based on nelaticAtomic features are tested against various positions of the
ships between existing features, according to observed doput, allowing a feature to be identified in various locatp
occurrences resulting from observations. These reldtipes and as such act in a convolutional manner, producing an
are captured using weights and nodes of an Artificial Neuralctivation value for each position, captured in a match map.
Network. This allows learning to take place on two scaled;eatures are constructed as templates from observations,
using reinforcement processes related to LCS to reinforggoducing a representation that responds to a region of a
and select features in a fixed size population, while weightfven observation.
are adjusted through gradient descent. Composite features are defined using a set of lower
level features, which may be atomic or composite, and a
vector defining their relative positions. New composites ar

Learning Classifier Systems (LCS) are typically basegdonstructed as a random set of the active features for a
on logical structures. Many use real-valued represemistio given observation, based on the relative positions of #gtiv
however classification rules are interpreted as matchieg tiybserved. This is captured as an ‘and’ relationship, géeera
observation in a discrete manner. The population of clagrom an observed co-occurrence of features.
sifiers contains general and specific rules, where a givenTo identify the active features for a given observation,
observation may be matched by a number of classifieesach atomic feature is tested at each position of the input,
of various degrees of specialization. Common features aggoducing an activation map. The activation of composite
captured in building blocks, and are preserved throughserogeatures is achieved by examining the activation values of

over in the genetic algorithm. Classifiers can also be definegch child at its relative position, producing an activatio
using a hierarchical structure, employing a populationesf r map for the composite.

used features, where features are recorded discretegathst
of redundantly, and recombined in various combinations to classifications
produce classification rules [16]. The hierarchical apphoa
maintains features according to reinforcement, and cseate
new features based on combinations of existing ones, withou
the use of a genetic algorithm. Lowest level features, known ]
as ‘atomic features’, can be tested for activation directly ~ = ... . | R
against the observed environment. Higher level featuref,
known as ‘composite features’, capture relationships betw
lower features, which may be either atomic features or other
composites. Features can be produced with varying degrdes
of specificity, and are connected to classification terms i
a manner similar to other LCS rules. This structure allow
the definition of classification rules with varying degrees

of specialization, where additional specialization can bSbservation
produced from a general feature by the addition of further
properties. A representation of a hierarchical feature/agk,

as used in this study, is shown in Figure 1. Fig. 2.

A. Coarse learning design

atomic composite features
features

Relationships between features in the construceseiank.

E In most LCS systems, reinforcement of classifiers is based
on expected reward, representing the probability that argiv
! o classifier will accurately predict the outcome [17]. In therh

archical representation, features are re-used betwe@usar
classifications, and as such a measure of expected reward
is less meaningful. Reinforcement takes place following an

1. 2. 3. 4. 5 6. analogy with cognitive memory traces, that are reinforced
through use, as described in the ACT-R model [10].
Fig. 1. 1. a continuous valued input state, 2. a general ifirssvith The population of re-used features is maintained accord-

two binary values and six general ‘don’t care’ values, 3. aarspecialized . A .
classifier with only two generalized values, 4. re-useduiieat that march N9 t0 @ measure oéccessibility This is related to base-

part of the state, 5. general classifiers each produced freinge re-used level activation in ACT-R, determined as a quantity that is
feature, 6. a more specialized classifier constructed ftwrconjunction of  jncreased with use, and decreases over time captured as a
the two general features. - ' - . .
summation and exponential decay (Equation 1). To provide
more stable values this has been simplified as a running
The population of features is dynamic, with a fixed maxaverage (Equation 2). A constant quantity of reinforcement



is provided each time step, in the current implementatit thof the feature to the observation matches a constant value
is provided to the feature with the highest predictive valué, by initialising weights according to observed values, and
and its child elements. The predictive value is determineglormalising such that the sum of squares.id-eature acti-
using a ‘softmax’ calculation for each feature, to detemminvation values are continuous, and in order to capture featur
the probability value of the feature predicting the correcbeing active or inactive, as used by LCS systems, a threshold
class. Distributed reinforcement approaches producdasimivalue is employed, however in practice this is simply used
behaviour, however the use of reinforcement of the highesi limit the features considered in the construction of new
predictive feature has the advantage of producing a refeatures.
ognizable relationship between generalized and speethliz For composite features, the logical relationship between
features. Specialized features, which have a higher gieelic elements described in the LCS feature network is approxi-
quality, will be given preference for reinforcement, ane th mated by the weights of the network elements, capturing a
limited size population will necessitate a balance betweesoft ‘and’ relationship. When a new composite is created,
general and specialized features. each weight is set to the current activation value of thedchil
feature, and the weights normalized such that the square sum

" is a constank. By initialising the bias value to-(k — ¢),
B;=logy t; (1) the composite is initialized to be active approximately whe
J the conjunction of the child elements are active.
Afi=a(r — fi-1) (2) The relationships between features and classifications are
B. Gradient descent model captured in fully-connected links between each composite

apd a ‘softmax’ classification layer. This produces a togglo

Our implementation captures the construction of a gradie : ity | d and i d h i
descent network based on the feature grammar cons;trucﬂeﬁt Is not strictly layered, and Is necessary due to the se
organising topology of composite features.

using the above method of creation and reinforcement, andAS each feature produces an activation value for each
is referred to as an Abstract Deep Network. Each feature . P .
. ; gsition, the mapping between the composite feature layer
is represented as a unit of the network, and as such the e . . .

. and the classification layer is based on a single activation
topology of the network is altered as new elements are

produced. The topology is altered as new atomic featur%églue for each feature, using the maximum value. To perform

or composites capturing connections between existingsun ackpropagation, adjustment of child elements is perfdrme

are produced, and as features are removed. This approacahsed on the activation value for the position of the highest

. value in the top-level feature, and the activation valuetfier
Is distinct from the method used by NEAT systems [18]'relative position of each child feature. Further detailghod

NEAT is an evolutionary approach fgr cons’Fructlon of abackpropagation method are described in [19].
neural network topology using Genetic Algorithms, where

each member in the population is a complete network, arEJ
refinement takes place by selection over multiple indepeinde ™"
networks. In contrast, our method is based on a population of This implementation captures ‘and’ relationships, preduc
features, where each is independently selected for usefsiining a hierarchy of features of increasing specializatidreré
according to local rules, based on the accuracy and frequervay be advantages in using an ‘and-or’ structure, as it
of use of the feature. The structure of the network is show@lows a greater variety of representation including iravace

in Figure 3. between higher level structures, however an ‘and’-based
network is used to limit complexity. ‘And-or’ propertiesear
seen in cognitive structures, such as in the ventral strdam o
the visual cortex, and a simplified representation is cagkur

in models of simple and complex cells, such as Convolutional
Neural Networks, based on a pre-defined topology.

The development of ‘and-or’ networks to capture gram-
matical representations of images based on parts has been
studied in [20], addressing the development of higher level
structures than those typically captured in artificial réur

3 4 5. c. hetworks. This is based on an analytical approach, using
retrospective analysis of the network as a whole to develop
FLQ- 3. dS_tructurze of the f‘feature netswork{ including CO:)WBQI rpapS- 1. the feature network. The method described in this paper
B e s of ol ol addresses a similar objecive, the abilty to capture fighe
5. composite activation map, 6. softmax output, conneatealltcomposite  level structural relationships, however this is done usieif-
features. organising principles based on local rules.
Candidate ‘and’ relationships can be identified from ob-

Weights of new atomic features are created according &erved co-occurrences of features. Meaningful ‘or’ relati

an observed region, and are chosen such that the resposips are more difficult to identify through local operason

Specialization and generalization




as individual instances are not indicative of significars-di topology fixed, acting using only the gradient descent metho
junctions, and it is likely that retrospective analysis ofre to adjust weights.

kind is necessary to identify meaningful ‘or’ relationships Two network structures are examined. The first uses a large
such a population based on ‘and’ relationships, represgntiset of 1500 atomic (first level) features and 5000 composites
increasing specialization of features, is addressed is thiapprox2 x 10° weights total), the second uses 100 atomic
study. features and 10,000 compositdsd(x 10° weights). These

A balance of generalized and specialized features is preenfigurations are referred to as 1500A-5000C and 100A-
duced by the reinforcement process. Based on the currei000C respectively. The first network allows a larger num-
LCS implementation this can be considered as the maxrer of feature maps, while the second relies on the re-use of
mally specialized population of rules sufficient to covee tha limited set of features through composition relationship
observed environment. Other approaches such as XCS [17lhe network with a large set of atomic features showed
emphasize maximally general rules, preferring a genefal ruan average error rate of 0.79% (classification errors on each
over a specialized one if the expected outcome is similaiyn out of 10,000: 63, 69, 71, 71, 80, 81, 81, 83, 83, 83, 89,
however this is based on direct examination rather thagg)1 while the small set network showed an average error
a self-organising operation based on reinforcement. LCst 0.86%. Further runs were conducted using a randomly
systems produce overlapping features, where a populatigBnerated topology comparable to that produced by the self-
contains general representations as well as specialEatiyrganising system, with randomly initialized weights. The
that provide refinements for particular examples. This i§se of random initialization produced an average error rate
related to cognitive basic level and subordinate categerizgf 1 250, A minibatch size of 100 was used, however similar
tion, such as a ‘bird" and a ‘penguin’, where a specialresyits were found using stochastic updates, with greater
ized category captures specific properties that are diftereyariation. Results shown are based on Rectified Linear Units
from the general class [21]. The described |mplementat|0(rp2e|_u) [22], similar performance results were found using
captures specializations where advantage is provided OM@fperbolic tan units, however ReLUs provided slightly éast
a general representation, through preferential sele@ih ¢onyergence and less processing. No pre-processing of data
reinforcement. The use of feature representations condposg ;sed, other than to scale inputs with mean zerocand!.

from parts allows incremental specialization. ) Previous results using standard ANN techniques are typ-
While a number of broad goals have been outlined, the,y jimited to approximately 1.6% error, while experi-
current study explores the interaction between a Coarfgants ysing Restricted Boltzmann Machine based systems
Iearmng process for creating gnd re.mforcmg feature; Rave shown an error rate of 0.95%, and 0.79% using
a hlerarchlgal' structure, and fine-tuning thrpugh grad'emaropout’ [23], described as a record for systems without
descent. This is addressed as a general learning systeém, Wtio knowledge or enhanced training sets. Lower errorsrate
limited assumptions abqut the domam. Low level featureS,ye peen shown with systems that use significant pre-
respond to a limited region of the input and are CO”V°|VeHrocessing, or are based on a specific topology, for example

on the input space, and relationships between features §@o, has been shown using pre-training and sparse feature
defined using a vector relationship, implying a particulaggaction in a convolutional network [24].

dimensionality. Further assumptions such as those used in . -
Our system uses less assumptions than existing convolu-

CNNs, including connectivity between higher features Uaset. o
1 X . o . ional networks, however it is not as general as RBM based
on a limited spatial region, or specific operations such as a

fixed topology of simple and complex cells, such as ooIinSyStemS' Our result is comparable to that shown by REM
pology P P ’ P 9echniques using dropout, also without the use of enhanced

operations, are not included, to allow learning based on: . . )
limited self-organising principles. _tralnlng se_ts. Some further assumpuons_have _been_ included
in our design, based on the assumed dimensionality of the
input, and the use of shared weights to allow convolution of
features. The topology used by our system is self-orgagisin
A MNIST and does not makg use of specific functions common to
CNNSs, such as pooling and local contrast normalization. The
The MNIST dataset of handwritten digits has been used &spology and functions used by CNNs are a fundamental
a benchmark for many different techniques, and is based aspect of their design, to the extent that the specific use of
a large set of 70,000 images for training and testing, of sizectification and normalization functions can produce top-
28x28. Training of our system was performed in two phasekevel results even when random features are used [25]. The
The first phase involved use of the population reinforceme@onvolutional Deep Belief Network [8] provides another ap-
method for creation and selection of features, to develep tlproach (0.82% error), where pre-trained features are used i
network topology. This acted in tandem with the gradiend convolutional architecture, however this approach fesus
descent method, providing adjustment to the feature weighbn the development of low level features that are used by a
This phase was conducted fbx 10° sample presentations, to Support Vector Machine, with a kernel function specialized
construct the network topology based on the coarse learnitmyvards image domains [26]. In contrast our approach is
technique. Subsequent fine-tuning was conducted with tii@cused on the development of higher level relationships,

IIl. EXPERIMENTS



with minimal domain-specific assumptions. 100A-10000C features in a self-organized network is deeper
however compared to the distribution from a randomly

45 : constructed network using the same creation method, the
—— creation ratio average depth is smaller. This is a result of a bias from
[ developed network]  4_gccurrences of active features, and selective preferen

40+ {1 towards a shallower network. This may be indicative of a

point where addition of specialization features to exgtin
representations produces structures that are not useful an
35- 1 are not reinforced, related to ‘terminal features’ [27].

‘Dropout’ has been shown to improve performance and
generality of ANNs at a cost of increased training time,
30 ] improving the error rate of a standard feedforward network
from 1.6% to about 1.3% using dropout on the hidden units,
and about 1.1% using dropout of visible units. Introducing
257 7 dropout into our system showed significantly degraded per-
formance. This may be due to the use of weights initialized
to represent conjunction relationships, as inhibitedvatitin

ratio

20 2 3 4 5 of units will lead to greater reduction in activation of pare
child features nodes. Our network captures sparse relationships usinfg a di
1600 5 00A 5000C ferent approach, and as such the random inhibition behaviou
1400t - - - 100A-10000C | of dropout does not appear to be beneficial.
== 100A-10000C random
B. Normalized-uniform NORB
1200 Tests were conducted on tlmrmalized-uniform(small)
1000} 1 NORB dataset, with minimal changes to the model and
8 parameters where possible. This dataset is a set of images
2 800F ] based on photographs of objects at various angles, of size
£ ,w-"'\ 96x96 stereo images. Results using Support Vector Machines
600r " N | have shown 11.6%, logistic regression 19.6%, k-nearest-
4001 *\ i neighbours 18.4%, and Convolutional Neural Networks 5.6%
"\ error [28], [29]. Previous general approaches using neural
200 * 1 networks have used reduced dimension inputs for tractabili
"\,_’ Using a ‘foveal’ representation of dimension 72x72, [30]
% 20 25 0 35 showed results of 6.5% error using a multi-layer network
depth with a greedy pre-trained first layer, without the use of data

_ Distribution of th ber of child el ~augmentation. Further results using 32x32 subsampling hav
e e e neeheM2Ske  shown 8.99% error using pre-{raining and fine-tuning [31].
showing self-organising preference for fewer child eletser(bottom) We have used a similar model as for the MNIST example,
Depth distribution of elements in the developed 1500A-8D0tetwork, ysing 100 atomic (first layer) features, and 10,000 sparse
tlhoeoggée'r?ept\fv%rtoggntogogifnig?t‘gg'a‘t'i;]”‘:)rﬁcfs"gogpl'gwcirgj”:;‘fc?ﬁ)r higher level features. These parameters may be considered
lower depth. a meta-model, as the actual topology is self-organising. Ou
model has shown 11.96% error. This result is promising con-
sidering a largely general model has been used, with minimal
Details of the network produced by our system are showglomain assumptions or parameter tuning, and without the use
in Figure 4. The developed network shows the distribution aff pre-training.
the number of child elements per feature skewed towards aFirst level features produced from the MNIST and NORB
smaller number than the creation distribution, resultimgf  datasets are shown in Figure 5.
selective pressure, and indicating a self-organisinggpegice
towards a smaller branching factor. The number of child IV. DiscussIoN
elements per feature is several orders of magnitude smallerOur system has demonstrated the use of a deep feature
than that used in layer-wise fully connected networks, &hilnetwork constructed using a coarse learning method, in
the depth of the network is greater. The depth distributiooombination with gradient descent learning, acting as an
is shown for the network produced using 1500A-5000@rtificial Neural Network. This provides a novel means for
features, for the network produced using 100A-10000C, arabnstructing the network topology and for initialising the
for a randomly constructed network using 100A-10000hetwork, that shows faster learning and higher accuracy
This shows that a much flatter network is produced whetihan a similar network initialized randomly. The method
a larger number of atomic features are available. The use @émonstrated uses convolutional features, however fewer



as the scale and complexity of problems change. One of
the principles behind deep learning is to capture functiona
and representational modularity that allows the structfre

a problem or environment to be captured [28], in order to

provide advantages in terms of scaling and versatility. As
such addressing representational and functional issues is

autonomy in more challenging environments.

= T, intaini i
= !:I F ] ”% h | Wway of maintaining these goals, to work towards allowing
Nl :"'.f : , - In human cognition, rapid processing is used to identify
= T ¥ o N context and establish expectations of objects that arby ltke
ar r “ r be present. The brain is able to store information on an im-
. F

mense range of experiences and retrieve relevant infoomati
Fig. 5. First-level features developed from the MNIST detdsop), and  quickly, and itis likely that the processes used, along With
NORB (bottom) cognitive biases they exhibit, such as the misinterp@tadf
objects according to context [33], [12], are significant for
allowing such tasks to be performed. As such, capturing
. . . , thle interaction between specific operations that act using
domain-specific assumptions are used than Convolutiona L . .
. independent local rules is likely to offer important bersefit
Neural Networks. Our system addresses a different problem

. . ) . . in’ addressing larger and more complex tasks. The use of
emphasising discovery of higher level relationships betwe ; .
o , - coarse learning based on reinforcement, and the develdpmen
features, and the combination of coarse and fine learni

rather than discoverv of low level features. As such ngf higher level feature relationships, are a step towards th
"y ot . - : %roader aims of capturing cognitive processes that opatate
complementary relationship with existing systems may bI‘waigher levels of abstraction, such as contextual effecs th
fOl_Jrr;]Oé topolo roduced is deep and very sparse ThPsmVide top-down facilitation [13].
pology produ ' P Very sp ' Recent experiments in computer vision have shown that

is a property of the process that develops the nEEtwork’il‘:ﬁlcreasing the amount of computing power enable CNNs

larger branching factor has not been used as there I5t& scale to allow identification of a large collection of

g;esr: f;;fegi?éef;g;uf;nﬂfé g:n:rt]) L:)rf tr?é gg?vcgf;'%n;xt bjects, and with a higher resolution than those used irstask
P ' P rformed on desktop computers [34]. This is a promising

a rrr;eflecittlon nOiI the Ere\stlfon tprrocesrs anr? ttrhet ndurtr:ber d dication of the effectiveness of the techniques, however
COMPOSItE UNIS, as New fealures are constructed based ), , questions remain regarding the ability to combine and

observed co-occurrences of active features, and in orderﬁ] egrate information, and to be able to develop functional

galgtru;er? cr:;)tr)r;pr)irfab:?tgt;rpebersg;Welghts with other Systenp g representational modularity. More versatile algaomigh
ge hu uni used. will likely be needed for these tasks, our approach aims

On ea_ch of these t_as_ks |mprov_ed performance can c?provide a contribution towards these goals, by presgntin
fou_nd using more speC|aI|_zed techniques, partlcul_arly @NNaIternative means for feature discovery and representatio
which introduce assumptions about the connectivity of the

network and the use of specific functions at each layer. In V. CONCLUSIONS
order to develop advances in artificial learning it is impatt Capturing modularity and higher level effects is an im-
to explore both domain-specific and more general learningrtant goal in allowing learning systems to address more
techniques. complex tasks based on generalized learning techniques.
Studies of vision-specific CNNs have shown that a criticartificial Neural Networks are an effective technique for
aspect of performance is the choice of topology, notablyapturing relationships based on local operations, atfhou
the use of absolute value rectification, local contrast @mbrm they are typically based on optimization of a single objexti
ization and average pooling [25], and that such a structufanction, with limited modularity. Recent techniques suash
allows top-level results regardless of the feature develagt  pre-trained networks introduce independent learninggyofl
method used. This occurs to the extent that the use fgature discovery and fine-tuning, however other effecté su
random features within the given topology provides resultas coarse learning processes require further abstraction.
comparable to those with more sophisticated features. This study has demonstrated the use of a coarse learn-
A contrary perspective in [32] shows that benchmarkng process, related to more abstract cognitive processes
results can be obtained with simple models such as a singtban neural level effects commonly addressed in ANNSs.
layer topology, when specific choices of hyperparameteis aifhe system acts using population-based measures related to
pre-processing are used. Does this mean that the methodLefarning Classifier Systems. This allows the development
feature development and the processes involved are irretd- a feature network using local operations that act on
vant? While benchmark results can be found through sueh broader scale, related to the construction of symbolic
widely varying approaches on standard datasets, it is ot neggrammars. The feature network is captured using the weights
essarily the case that the same approaches will be effective a neural network, providing a coarse learning process



that constructs and alters the topology of the network. Th{$5] R. Samson, M. Frank, and J.-M. Fellous, “Computatiomaidels of
introduces a novel approach for capturing self-organising
principles at a higher level of abstraction. This providegg
a means for identification of features in a deep networ
before fine-tuning takes place, related to the task addiesse
by pre-trained neural network techniques. Experiment® haym
shown high level results on the benchmark MNIST task,
showing a classification accuracy of the same order as the
best general learning techniques (0.79% error), and withg,
greater generality than specialised CNN techniques. @urre
RBM and CNN techniques show significant improvement
over the first results presented by the techniques (1.23% a[r%%]
0.95% with no distortions respectively). The self-orgamgs
network developed by the coarse learning process provide
significant improvement over a similar random network usin
randomly initialized weights (0.79% vs 1.25%), indicatiag
significant role for this process in the early stages of legyn
The implementation has shown the development of a
representation capturing features of increasing speat#din,
where the population maintains a balance of generalized and
specialized rules. The method provides a means of addgassigb]
irregular domains with ANNs, and a means of introducing
gradient-descent based learning with ‘evolutionary’ eyst.
This provides a new approach for capturing modularity witI[|24]

the aim of allowing more scalable, flexible learning with

general learning algorithms.
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