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Abstract—We develop a cellular neural network architecture  difference learning [7]. Cellular automata have also been
consisting of a large number of identical neural networks ysed in this context [8].
organised in a cellular array, and introduce a novel weight The main distinguishing feature of our approach is the use

sharing scheme based on the principle of internal symmetry . .
from particle physics. This Internal Symmetry Network is then of a cellular neural network architecture, and a novel weigh

trained by self-play and temporal difference learning to peform  sharing arrangement which we call anternal Symmetry
position evaluation for the game of Go. Lookahead search is Network inspired by the phenomenon of internal symmetry
achi_eved by pa_rallelizing the networ_k on a \_/ideo card, and jnp particle physics.
training an auxiliary network for heuristic pruning. Sections I, 1l and IV outline the rules of Go, the
structure of Internal Symmetry Networks, and the input and
output encoding for the network. Section V summarizes our
initial experiments without tree search (previously repdr
There has been a growing interest in computation systeriis[9]). Sections VI and VIl explain how tree search is made
which enable global behavior to emerge from the interactioppmputationally feasible in this context, by parallelgithe
of local rules. Cellular automata are one example of thigietwork on a video card and training an auxiliary network for
but they are limited in having only a finite number of state§euristic pruning. Sections VIII, IX and X describe prekmi
available at each cell. nary experiments, modifications, evaluation and suggestio
A Cellular Neural Network (CNN) is a collection of for future work.
identical neural networks arranged in a cellular array [1].
CNNs are similar to cellular automata except that (1) the Il. THE GAME OF GO
state space at each cell is continuous rather than discrete ) )
and (2) the update rule is given by a neural network rather The rules of Go are relatively simple to state but the
than a lookup table or other discrete mapping. Recent yed#@Me is notoriously difficult to master. Two players take
have seen a growing interest in CNNs, particularly for imag'™$s placing white and black stones on the vertices of
processing [2]. Generally, the weights are determined Ky "€ctangular grid, each attempting to surround as much
hand-crafted design, or by global random search. tgrrltory as pos&blg without being captured. The stqndard
One task which seems very appropriate for this kind ofize for a Go board |$9 x 19 but games are also sometimes
architecture is the ancient game of Go. Standard searBlfy€d On boards of siz@x 9 or 13 x 13. _
techniques generally run into trouble in the Go domain due A contiguous set of stones of the same color (i.e. con-
to the very large branching factor [3]. For this reason, GB€cted along neighboring edges) is callegraup. Empty
programs for a long time relied on symbolic reasoning rath&ertices next to a group of stones are calierties of that
than search. However, with the steady increase in desktgfPuP- If the number of liberties of a group is reduced to
computing power a range of other approaches have recenf§’© at any point during the game (because the group has
become feasible — most notably, a new breed of strorﬁ_&ﬁ?n surrounded by enemy stones), that groumajstured
programs based on UCT search [4]. is means that aII_the stones of that group are removed
Human players do make use of search methods in decidiffg™ the board, leaving empty spaces where new stones can
their moves, but they prune the search tree very heavilyir Theater be played. You are not allowed to play into a position
pruning mechanisms seem to rely on some kind of distributei1ich reduces the liberties of one of your own groups to
computation — perhaps making use of low-level processin%ero.(SUI_CIde) unless this move at the same time reduces
within the visual system. By mimicking this process withthe liberties of an enemy group to zero. In the latter case
a cellular neural network (or similar architecture) we ebul N ENéMy group is captured (thus creating at least one new
potentially develop new Go programs employing heuristil?€rt for your group). There is also a rule — called "ko” -
alpha-beta search, but using neural networks for move evflich prevents the board from being returned to a position
uation and selection. previously encountered in the same game. It is possibleyat an

A number of Go-playing programs have previously beeg’me to passinstead of making a move. When both players

developed which incorporate neural networks in a variet e_lcf'r?e to pass one a1|‘ter the_other, the g?m(ea 'S_ g\r/]_er. d
of ways [5] including supervised learning [6] and temporal, | N€'e are two popular scoring systems for Go: Chinese an
Japanese. Under Chinese rules, you score one point for each

Note: this paper was submitted in 2009 to IEEE-TCIAIG, butswent of your.own stones remaining on the board at the end, and
accepted for publication. one point for each vertex surrounded by your own stones.

I. INTRODUCTION



Vertices surrounded by a combination of white and blackve will use M and A to denote neighborhood structures in

stones do not score a point for either player. The Japanabe form of offset values:

system is somewhat more complicated because you do not

score a point for stones remaining on the board, but only for M= {[0,0], 1,01, [0, 1], [=1,0], [0, 1]},

captured stones and for “territory”, where “territory” che N = Mu{[,1],[-1,1],[-1,-1],[1,-1]}.

loosely defined as “vertices which both players realize @oul _ _

be surrounded by your stones if the game were to continue/Nen viewed as offsets from a particular verté, repre-
Chinese rules are easier to implement computationally, af§Nts the vertex itself plus the neighboring vertices to its

have therefore become the standard for many “comput AST, NORTH, WEST and SOUTH, N includes these but
only” Go servers like CGOS. adds also the diagonal vertices to h@RTH-EAST, NORTH-

WEST, SOUTH-WESTandSOUTH-EAST. Assuming the action
of G on N (or M) is also given by Eqn(1), it is clear that
I1l. I NTERNAL SYMMETRY NETWORKS forge G, A e A andv € N,
One of the interesting features of Go is its high degree

of symmetry. Go has an approximate shift invariance, in g(A +v) = g(A) +9®).
the sense that the same arrangement of stones occurringziich cell\ = [a,b] € A has its own set of input, hidden and
different places on the board is likely to lead to the nexteto iyt units denoted byi*?!, Hl*t and Ol*. Each edge
_being playe_d in the same _position within this formation.€Th g \ — [a,b] € R\ A also has input and hidden units, but
invariance is only approximate because the strategy may R§ output. The entire collection of input, hidden and output

affected by the edges and corners of the board.) unitsZ, # and O for the whole network can thus be written
To capitalise on this property, we use an architecturgg

consisting of a large number of identical neural networks

organised on a cellular array. Each cell in the array corre-
sponds to a vertex on the Go board at which a stone may be
played. If the size of the board is-by-n, with n = 2k + 1,

then the board can be considered as a laticef vertices

A = la,b] with =k < a,b < +k. It will be convenient o

to deLotg byA the “extended” lattice which includes an For an mdmdugl cell)\. € A, the neural network update
additional row of vertices around the edges of the boar&quatlons are given by:

1 = {I[ayb]}[a,b]eK
H = {H[(hb]}[a,b]eK
0 = {0}, pea

Le. A = {[a, b} - (k1) <ap<(hr)- H' « H(Z)* = tanh (By + Y ViI*)

veN

— &)@ O - O} = b (Bot 3 Vel + Vit
~ g veN

st \:j: A where¢ is the sigmoid functions(z) = 1/(1 + e~ ).
v AS S S In other words, each cell is connected to its nine neighlgorin
B cells (including diagonal neighbors) by input-to-hiddeme¢
r r r nectionsVyr, hidden-to-output connectionsoy and input-

to-output “shortcut” connectiong ;. By andBo represent
Fig. 1. The Dihedral groufs of symmetries of the Go board the “bias” at the hidden and output units. We assume that
for the edge cellsX € A \ A), the hidden unitdl* remain

In addition to shift invariance, the Go board can be rotateidentically zero, while the input$* take on special values
or turned upside down in 8 different ways without affectingo indicate that they are off the edge of the board.
the rules. We therefore design our system in such a way Any elementg € G acts on the input€ and output units
that the network updates are invariant under this group by simply permuting the cells:
of symmetries. As noted in [7], this can be accomplished
by appropriate use of weight sharing [10], [11]. Here, we 9@ = {190y ek
employ a novel weight sharing arrangement, which we call g(0) = {Og([a’b])}[a,b]@\
an Internal Symmetry Network.

The groupg of symmetries of the Go board is the dihedraln addition to permuting the cells, it is possible fgrto
groupD, of order 8. This group is generated by two elementgct on some or all of the hidden unit activations within
r ands — wherer represents a (counter-clockwise) rotatioreach cell, in a manner analogous to the phenomenon of
of 90° and s is a reflection in the vertical axis (see Fig. 1).internal symmetryin quantum physics. The group, has

The action ofD4 on A (or A) is given by five irreducible representations, which we will labelTaivial
(T), SymmetricalS), Diagonal (D), Chiral (C) andFaithful
rla,b] = [-b,q] (F). They are depicted visually in Fig. 2, and presented

sla,b] = [—a,b) (1) algebraically via these equations:



Trivial Symmetrical TABLE |
REWARD TO BE GAINED FOR EACH VERTEX BASED ON THE

" " " " " - " * VALUE OF A CAPTURED STONE(c) AND A FINAL STONE (s)
— — — — — -+ — -
. . Ownershi State RS RS RS
Diagonal Chiral P - ° *
— - —» - — — — — white + (empty) | 1 . 1+c
white o (filled) s s s+c
Faithful _
atari + (empty)| O -c c
1 black o (filled) -8 -(s+¢)  -s
j |—> T black + (empty)| -1 -(1+c¢)

Fig. 2. The five irreducible representationsIof
IV. NETWORK INPUT AND OUTPUT

MT) =T, sT)=T The architecture we hav_e described so far is of a ggneral
rS) =-S, s(S) =S nature a_md could be applied to other_ tasks such as image
r(D) =-D, s(D) =-D processing a; wel[ as board games like Go. The input and
rC) = C, s(C) =-C output encoding will depend on the Fask. .
r(F)i=-F, s(F),=-F Ir_1 the case of _Go, we assign 14 inputs at each cell with
r(F)a= le s(F)o= F a discrete encoding to indicate the color of the stone occu-

pying that cell, and to provide some aggregate information
@bout the liberties of the group to which that stone belongs

We consider, then, five types of hidden units, each wit escribed in later Sections).

its own group action determined by the above equations.
general, an ISN can be characterized by a 5-tuple specify- ) )
ing the number of each type of hidden node at each cga- Output Encoding for Evaluation Network
(ir,is,ip,ic,ir). Because it is 2-dimensional, hidden units Our initial experiments involved one output unit per cell,
corresponding to the Faithful representation will occur inrained to predict an appropriately scaled estimate of the
pairs (R, F2) with the group action “mixing” the activations expected reward associated with that cell. However, we
of F; and k. The composite hidden unit activation for aeventually settled on a network with 7 outputs per cell,
single cell then becomes a cross product which together try to predict the expected reward under two
i i i i i different scoring systems.
H =T 8% 5 D o G x (Fy x Fa)™ Different scoring systems for Go can generally be charac-
with the action ofG on H given by terized by two parametersands, wherec is the reward for
g(H) = {g(Hg([a,b]))} _ each enemy stone captured anis the reward for each live
[a,b]€A stone remaining on the board at the end of the game. (We
We want the network to be invariant to the action®fin  assume a score of 1 for each vertex of territory that is owned

the sense that for alj € G, but empty at the end of the game). In this framework, the
g(H(I)) = H(g(D)) Chinese scoring system corresponds:te- 0,s = 1 while
O(T.H 0D o(H the Japanese system roughly corresponds t0 1,s = 0,

9(0(1,M) = (9(T),9(H)) but with special rules for ending the game early (discussed

This invariance imposes certain constraints on the weighibelow).
of the network, which are outlined in the Appendix. In rethte The reward to be gained at each board location is shown
work [12] we have conducted experiments to compare thia TABLE |. The location’s current state is indicated by the
effectiveness of different numbers and types of hiddensunisubscripts at the top of each column, while the rows indicate
for various image processing tasks, and also explored tite ownership and final state at the end of the game. Two of
possibility of connecting each cell to itself and its foumnma-  the table entries are blank, because we do not consider the
diate neighbors with recurrent hidden-to-hidden conoeecti possibility of a white stone becoming a white liberty, or a
In the Go domain, we avoid recurrent connections becaubéck stone becoming a black liberty.
a strictly feed-forward architecture allows the network to We want our network to predict the reward for the two
be parallelized more effectively. Since the experiments aspecial cases=1 and s=0, which are shown in Table II.
computationally intensive, it is not possible to test alireo We first consider the task of predicting; RR! and K. In
binations of hidden units. For the experiments reported hertheory, these three values could all be predicted with one
we chooseir = 4, is = 2, ip = 2, ic = 0, andirp = 2, output (since only one of them is applicable in any given
making a total of 12 hidden units, 2310 connections per cedituation). However, we choose instead to use three separat
and 714 free parameters in the overall system. outputs Z., Z, and 4, in order to allow the network more



TABLE 1l . . .
REWARD TO BE GAINED FOR EACH VERTEX a likelihood:

FORTHE CASESs = L AND s =0 output | interpreted as likelihood of ...
RL R RU | RO R RO yan white gaining territory
- Z white avoiding capture
white  + | 1 Ihe | 1 1+c Z. | white effecting capture
white o | 1 1 1+c | O 0 c A% white making an eye
atai +| 0 - c 0 - . A% | black making an eye
A, white stone captured, leading to black eye
black e | -1 -(14¢) -1 0 < 0 A, black stone captured, leading to white eye
black +] -1 -(1+¢) . | 1 A4e) Note that, although there are 7 outputs, in practice only
two or three of them need to be computed for each location
TABLE I (Z+, A3 and A} if the location is empty, £ and A, if
RELATIONSHIP BETWEEN REWARDS AND NETWORK OUTPUTS |t Contains a Whlte Stone,.za.nd A If |t Contains a blaCk
Rl = 27,1 RO=  A%— A stone).
+ + + + +
RE= (240)Zo—(14+c) R3= c(Zo-1)-Ao B. Clarifying the Final Status
Rl = (24¢)Ze —1 RO= cZo+ A, The ending of a Go game has traditionally been by mutual
agreement between the two players. In the case of Japanese
B L . rules, this “early” ending of the game has an impact on
Ze=  (1+Ry)/2 A= max(R,0) the final score — because it allows each player to claim the

A% = max(-R.,0) reward for capturing “dead” stones, without sacrificing the
territory that would theoretically be lost in the process of
capturing them. In the case of Chinese rules, ending the
Ze= (1+R})/(2+c) Ae= -cZe+R} game early has no effect on the final score, but still makes it
difficult to predict whether a given location will be filled
or empty at the end of the game. In order to train our

o . . networks, we need to have a well-defined outcome so that
flexibility in computing these disparate values. The futurg,a final status of each location can be sensibly predicted —

status of a (currently) empty location is generally deteeti 1\ o1y in terms of territory, but also in terms of whether
by the influence of the surrounding stones, while that of & is filed or empty. We achieve this by adopting a novel
filleq !ocation is determined by the likelihood of effecting scoring system, for training purposes, which is somewhere
av0|_d|ng caputure. between the Chinese and Japanese systems, by awarding 0.4
Itis convenientto linearly re-scale the network outpuls Z ints for each captured stone, and 0.4 points for each stone
Z, and 7, from [0,1] to the new ranges [-1,1],(t+¢),1]and  yomaining on the board at the end of the game (i.e. setting
[-1,14¢], respectively — since these are the natural ranges fie above scoring parametersde- s — 0.4). This scoring
the_ \_/alues of B, R; and R (top left of Table Ill). Durlng system encourages each player to chip away at the opponent’s
training, the target values can be recovered by the inverggeries during the endgame, without filling in any of their
scaling (lower Ieft_of Tablgz ). . own liberties unnecessarily. Thus, all remaining blankaare
In order to predict B, R; and K, we add four additional i he carved up into isolated eyes, with each player trying

outputs A, A%, A. and A, and employ the transformations, mayimise their own eyes while minimizing those of the
shown in the right column of Table III. opponent.

The target values for these seven outputs will then be as
shown in Table IV. The current state of the vertex is indidate :

) ; C. Input Encoding
by the subscripts at the top of each column, while the rows i . .
indicate its ownership and final state at the end of the game.We allocate 14 input units to each board location. Exactly

. . one of these inputs will be “active” for any given locatiordan
Each of the seven outputs can informally be interpreted ?rc’me step. The active unit will be set t while the other

13 units will be set to0. This kind of “1-in-n” encoding
TABLE IV facilitates rapid computation.
TARGET VALUES FOR THE SEVEN NETWORK OUTPUTS . . . .
If a white stone is present, one of the inputs in the range

Zo = (14c+ Ré)/(?—f—c) Ao = c(Zo-1)-R?

_ Zy Zo  Ze | AL AL 1 A A 1-6 will be active. If a black stone is present, an input in
W T - the range 7-12 will be active. Input 13 indicates that this
aari | 1 ) e | o ol e o location is empty (no stone), while input 14 indicates that
Black (2) 266 2BC 0 0 26C 266 this location is off the edge of the board.

Black +| 0 0 _ 0 1 1 _ When a white or black stone is present, the choice of

input within the range 1-6 or 7-12 is intended to provide the



network with some aggregate information about the libsrtiecaptures may have taken place, creating new liberties r th
of the group to which that stone belongs. capturing group(s). To adjust for this, we slightly incrame

In our early experiments, each stone was classified intr decrement the likelihoods Z and A, for locations adjacent
one of 6 classes, depending on the total number of libertiégs the newly-placed stones. For each groijz and A
of its group. This led to poor network performance, becausare also augmented to include the likelihood of capturing a
all liberties were treated equally. We realised it would b@&eighboring enemy group (estimated conservatively as the
advantageous to modify the classification by weighting eaahinimumvalue of Z, among the stones in the enemy group).
liberty according to (a) the likelihood of it being retained
as territory, and (b) the likelihood of it remaining a libert V. NETWORK TRAINING
until the end of the game, thus becoming an eye. Since theseThe Evaluation Network was trained by self-play and
likelihoods have already been estimated by the network s#mporal difference learning [13], [14], [7] in the form of
the previous timestep, we can use this information to diassiTD(\) with A\ = 0.9. Each output was trained using cross
groups at the current timestep. Specifically, for each whitentropy minimization, with a learning rate of 0.000005.
(resp. black) group, we define tege-likelihood-Z to be the  Although this learning rate may appear small, the massive
sum of Z, (resp. (1-Z.)), and theexpansion-likelihoodA  weight sharing in the Internal Symmetry Network causes
be the sum of A (resp. A}) for all liberties of that group. differentials to accumulate at every single vertex, thanef
The group can then be classified into one of 6 classes, adding up to a substantial weight adjustment by the end of
shown in Fig. 3. the game.

The overall board evaluatioR is the sum of the expected

A 1 1 rewards for all the individual board locations. Moves were
3 5 6 . o .
777777 chosen according to a Boltzman distribution — meaning that
L5 5 4! the probability of each (legal) move is proportionalet®?,
777777 B where R is the evaluation of the board resulting from that
0.75 1 } } move. The Boltzman constart was set to 4 during the
| | training.

The shortcut connections (i.e. direct from input to output)
were trained in a preliminary phase, to provide a linear gday
Fig. 3. Categorization of groups into classes, based orlilesiéhood =z with a basic level of functionality (and to ensure that the
and expansion-likelihoodA. games would eventually terminate). All the weights of the
network were then opened up for 860,000 games of training

on a9 x 9 board. The training time was approximately half

Roughly speakingXZ estimates the number of eyes thata second for each game, or five days in total, on a 2.66 GHz
are likely to be made from current liberties of the group ac Pro ' ’

while ZA estimates the number of “openings”, i.e. potentla_ For evaluation, networks at intervals of 20K were extracted

avenues for expansion, or connection to other groups. ity played 10 games against each other pairwise in a round-
context, the six categories can roughly be characterized a%9pin tournament. For the tournament, moves were again

selected from a Boltzman distribution but with = 20.
Standard Chinese rules were used, with a komi of 3.5. The
results are shown in Fig. 4 where we see a noisy but generally
upward trend in performance.

Class 1: no eyes and no openings

Class 2: no eyes, and only one opening
Class 3: no eyes, but at least two openings
Class 4: one eye, but no opening

Class 5: one eye, plus at least one opening
Class 6: at least two eyes

D. Implicit Recurrence and Adjustment .

Although the network itself is feed-forward, the use of *
outputs from the previous time step for categorization ef-
fectively adds a kind of “implicit recurrence” to the system
Thus, even though each output celtlisectly dependent only Powm wm w m
on the stones in a local neighborhood, the categories 1 to o )
. - L . . Fig. 4. Percentage of wins in round robin tournament, fowneks from
6 (above) implicitly give it access to non-local informatio 3, sgok
about the number (and type) of liberties for the groups to
which these stones belong. Our Internal Symmetry Network architecture has the ad-
On account of being computed at the previous timestepantage that, even when trained only on $he9 board size,
the likelihoods Z and A are always slightly out of datethe network can then be made to play on any sized board
because two new stones have been placed on the board, aiithout changing the actual weights.




We extracted the best network (at epoch 580K) and played VII. SELECTION NETWORK AND SEARCH
several games against it on boards of $ize9 and19 x 19. . . .
Generally, the network can be observed to perform captures,The evaluation speed of 7000 p05|t|ons per second is fast
threats, blocking moves, etc. and its choice of moves seeffi ough to allow alpha-beta search. But, if we want to search

quite reasonable considering that its decisions are badgd omore than 2 or 3 ply, we need to prune the tree heurlstlca!ly
on a single board evaluation, with no lookahead. in order to tame the very large branching factor. For this

The next two sections describe our attempts to impIemeHPrpose' we train an auxiliargelection NetworkSelNev),

alpha-beta search with heuristic pruning. The necessa be used in_conjgnction_ with thé&valuation Network
valNet) described in Sections IV and V.

speed is achieved by parallelizing the network on a vide _
The inputs to the SelNet are the same as those for the

card.
EvalNet, but the SelNet has only one output unit for each
VI. PARALLELIZATION board location. While the EvalNet is intended to give an

We have parallelized our neural network code on adbsolute evaluation for a single board position, the Seidlet
NVIDIA GeForce 8800 graphics card, using the CUDAIndended to give aelative estimate, for all board locations
programming framework. simultaneously, of the incremental value of playing a stone

The CUDA framework requires an overall computation tdnto that location. In other words, the task of the SelNet
be divided into a large number of paralkbreads with the is to estimate how much the score would increase, for
threads organized infalocks An exact multiple of 64 threads each possible move, compared to the “benchmark” score of
per block is recommended, in order to gain the advantageBoosing toPAss (thereby leaving the board as it is). Each
of “coalesced” memory access. Memory on the device gutput of the SelNet is taken as a raw value, with no sigmoid
divided into shared memory — accessible only to threadsor other transfer function applied.
within a particular block — andlobalmemory — accessibleto  Note also that the SelNet is applidnbfore making the
all threads. Global memory is slower to access than sharedrrent move, while the EvalNet is applieafterwards
memory, but still faster than accessing the memory of th€his means that the adjustments to Z and A described in
host machine. Section 1V-D only need to take account of one new stone

In our case, the network activations are computed in twevhen applying the SelNet, rather than two new stones when
separate kernel invocations — one for the hidden layer, argplying the EvalNet.
one for the output layer. We always use exactly 64 threadsIn order to generate training data for the SelNet, the
per block. EvalNet is made to play 10,000 games against itself on a

For the hidden layer invocation, the number of blocks i33 x 13 board, with Boltzman constant = 8. As each
equal to the number of hidden units multiplied lﬁg&], move is played, the EvalNet's evaluation of all possible
wheren is the board size. Each block is assigned to computalternative) moves are dumped to a text file.
one of the 12 hidden units, for a set of 64 contiguous Let S, be the output of the SelNet at locatiapand letR
board locations. The weights associated with the relevabg the (aggregated) output of the EvalNet, which estimates
hidden unit are loaded into shared memory, as well as thie value of the board position resulting from a stone played
inputs for the 64 assigned board locations, together witht location A\. The EvalNet and SelNet thereby determine
the 32 locations above and below them (to ensure that @bltzman distributionp,} and {g,} given by
neighboring board locations are included). Because of the
1-in-n input encoding, the hidden unit computation for each Py = o = .
thread consists of a series of array lookups and floatingtpoi 2o eflu’ > ePSu
additions, followed by a single application of the hypeibol . ,
tangent function. The hidden unit activations are thenestor 1h€ SUm is over all\ € PASSU A, where Rpss is the
to global memory. evaluation _of the board in its current state, afigss = 0

The output layer invocation is similar. Although there ardy convention.- _ . _

7 outputs, in practice only 3 of them need to be computed for The SelNet is then trained by supervised learning. The
any particular board location, so the number of threadsds  COSt function is the Kulback-Leibler divergence betwetea t
[=-]. Each thread first combines the input-to-output weight§/0 Bolzman distributions, given by
with a series of array lookups and floating point additions;

it then reads the relevant hidden unit activations from glob D

memory, multiplies each of them by an appropriate weight, ~** ZPA log(q_A>

and applies the sigmoid function to the grand total. A

eBRx eBSx

S
This parallel implementation increases the speed of evalu- = ZPA log py — Zm 1Og(L)
ation to 7000 positions per second for thex 19 board size X X PN e/
(compared to 1600 positions per second for the non-parallel _ 1 B ] BS,
implementation). This is fast enough to allow a full alpha- N z;w o8 DA (;pAﬂSm + Og(;e )

beta search to depth 3, or a heuristically pruned search to
depth 5. We then have
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This makes sense intuitively, because it concentrates t
effort on moves for which either, or ¢, is large (i.e. moves
that are ranked highly by either the EvalNet or SelNet).

VIIl. PRELIMINARY RESULTS AND MODIFICATIONS

Our network played on thé9 x 19 CGOS server for
several days, under the nanfi@ shNet 1. Unfortunately,
it performed very poorly, with a rating of about 850 (see
Table V). There are only about a dozen programs whic
play regularly on thel9 x 19 CGOS server. Two of the
low-ranking players among them af@er ageLi b — which
uses a simple heuristic function — adri goGt p — an
updated version of a program originally written for the
Commodore AmigaFi shNet 1 only won about 20% of its
games againsiver ageLi b and 15% of its games against
Ani go@ p. A careful study of these games gave us clue
as to how the network’s performance might be improvec
Fig. 5 shows a game betweé& shNet 1 and A goG p.
We also analysed the self-play games (without lookahea
by generating graphs in th&Z,>A) plane for groups that
ultimately survived, and for those which were later capdure
From this, we made two important observations:

A. Changing the way Z-score is computed

We noticed that, in the self-play games, many group
ultimately died, despite satisfying the condition that the
eye-likelihood¥Z > 1.5. On closer inspection, it turned
out that these groups had a large number of “low-quality
liberties with little or no chance of becoming eyes. Groups ¢
this kind were also observed in games betwEeshNet 1
and Am go& p (see Fig. 5). Although it is obvious (to
humans!) that the likelihood of making an eye from thes:
liberties is effectively zero, the network was giving estied
likelihoods in the range of 0.05 to 0.15 for each of them. £
large number of these small likelihoods can then aggregate
a combined likelihoodZ greater than 1.5. To remedy this,
we define a modified Z-scor®’Z, by including in the sum Fig. 5. Game betweeRi shNet 1 (black) andAni go& p (white) at move
only those liberties whose likelihood of becoming an eye &1 (@bove) and 214 (below).
greater than 0.2. This modiified Z-score, with our original
thresholds of 0.75 and 1.5, turned out to give a much better
prediction of which groups would ultimately survive.

OO Y

0.75 (categorized according to the number of stones in the
group).

B. Modification to A-score We see that (1) our originalA thresholds of 0.75 and 1.5
We now turn our attention to the classification of groupgere much too low to give a useful prediction, and (2) the
for which >'Z < 0.75 . In our original scheme, these groupsthresholds ought to vary according to the number of stones

were classified according to their “expansion-likelihoad” in the group (with higher thresholds for larger groups).

A-scoreXA, with thresholds of 0.75 and 1.5 . This also explains certain deleterious behaviors exhdbite
Fig. 6 plots the likelihood of eventual capture as a functioby the network. Looking at the early stages of the game

of A-score, in the self-play games, for groups wiZ < in Fig. 5, we see thafm goG p (white) has placed sin-



TABLE V

““““ 1 stone RATINGS ON19 x 19 CGOS $RVER
. — — = 2stones
£N T Jstones Player No lookahead| 5-move lookahead
B Fishnet 1 850 £ 50 850 £ 50
E Fishnet 2 850 £ 50 1050 £ 50

o
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IX. MODIFIED NETWORK

A new evaluation network was trained for 400K epochs,
using the modified Z-score and revised A-score thresholds
outlined in Section VIII. The new thresholds, shown in Fig. 7
were chosen at the places where the graphs in Fig. 6 cross
the boundaries of 0.75, 0.5 and 0.25 (probability of capture

To make the training more stable, we introduced the
, following Negatrain enhancement: in our original experi-

s A ments, for training purposes, the network only considehed t
evaluation of everysecondboard position, i.e. the position
Fig. 6. Likelihood of eventual capture, as a function3h, for groups  after each move by a particular player. In the new exper-
with 3’Z < 0.75 (categorized according to the number of stones in th(?ments, the position afteevery move was considered; the
group). likelihoods generated by the opponent network were used
for the positions following each opponent move. This did
L Lo Lo Lo L indeed seem to make the training more stable, and allowed
AL P P A b us to increase the learning rate to 0.0001. The parameter
L . . .1 . was also increased from 0.9 to 0.95 so that the new network
3 U P would “look equally far into the future”.
S 24 As before, 10,000 self-play games by the new network
Euilg EREE EREE were used to train a selection network, employing the same
orignal £Z L stone 2 5 stonel 2 ssone? sormore 2. Modified Z-score and revised A-score thresholds.
The new network played on CGOS under the name
Fig. 7. Categorization of groups, based on the (modified)liggéhood  Fi shnet 2. When playing with no lookahead, it achived
{2z, the expansion-likelihoo&A and the number of stones in the group. approximately the same rating Bsshnet 1. However, with
5-move lookahead, the rating increased by 200 ELO, from
) 850 to 1050 (see Table VXi shNet 2 (with lookahead)
gle stones nicely around the edge of the board, wheregs,s approximately 85% of its games agaiAser ageLi b,
Fi shNet 1 (black) has avoided placing stones in isolationynq 450 of its games againatrii go& p.
and instead places its stones together in groups of 2 or 3-Fig. 8 shows a game betweelFi shNet2 and
This is because a 2-stone group in an open area of the boagd goG p. We see that the level of play represents a sub-

will fall into Class 5, whereas a 1-stone group would fallisntial improvement ovefi shnet 1, both in the opening
into Class 3 (with an A-score of approximately 2.6). and in the later stages of the game.

In general, a single stone in an open area of the board has
a good chance of survival and ought to be rated highly. In
contrast, the snake-like (black) groups appearing in Fig. 5
have virtually no chance of survival, but because of the We have demonstrated that Internal Symmetry Networks
large number of low-quality liberties they may easily aecrucan be trained to play the game of Go using self-play and
an expansion likelihood higher than5. Under our original temporal difference learning. Lookahead search is achived
scheme, these two situations are “confused” into the sanby parallelizing the network on a video card, and training an
class (3), causing the network to have an optimistic view aduxiliary network for heuristic pruning.
the snake-like group, and a pessimistic view of the single- The inclusion of 5-move lookahead search increases the
stone group. As a result, in the mid-game the network failgerformance by approximately 200 ELO, giving hope that
to adequately defend some of its groups, thereby allowindeeper search enabled by faster computation and greater
them to be captured. parallelization may lead to continued improvement. We have

Unfortunately, the performance of the network virtuallyidentified two other main areas for future research:
did not improve at all in moving from no lookahead to 3-1. Concerning the implicit recurrence of the system (Sec-
or 5-move lookahead (see Table V). In other words, thgon IV-D) we currently compute the likelihoods Z and A
misconceptions in the network’s evaluation (discussed@po from the previous board position, and try to account for
are quite fundamental, and are not of the kind that can like two subsequent moves by making slight ajustments to
“cured” by deeper search. the values at locations adjacent to the two new stones. This

probability of capture
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X. CONCLUSION
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Fig. 8. Game betweeRi shNet 2 (black) andAm goG p (white).

gives a sensible result in most cases, but seems to cause
problems in certain specific situations, where strategittdsa
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V(SLD = Vgl =0, pe€ {O,E,N,W, S}
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(1]
(2]
(3]

(4

(5]

are played out on the edge of the board. In future work,

we plan to use the network itself to compute the update(%

likelihoods in a more methodical way.

2. In our existing architecture, each hidden unit is coneect
only to its neighbors in & x 3 window. We have recently

(7]

found that, for image processing tasks, the performance can

be improved by extending this to & x 5 window (with

(8]

appropriate symmetry constraints). We plan to soon apply

the same modification in the Go domain.

APPENDIX: WEIGHT SHARING

(9

(20]

[11]

[12]

(13]

The constraints on the various network connections are out-

lined below — with neighborhood relationships abbrevidted [

E (EAsT), N (NORTH), W (WEST), S (SOUTH), NE (NORTH
EAST), NW (NORTH WEST), SW (SOUTH WEST), SE SOUTH
EAST) and O ORIGINAL).

Vo = | Vér Vés Vép Vée Vo

|: V'li’l Vgl V’f)l V’él Vg‘ll

v
OF2

T
v
FI:|
2
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