
1

Learning the game of Go with Internal Symmetry Networks
Alan Blair, School of Computer Science and Engineering, University of New South Wales

Abstract—We develop a cellular neural network architecture
consisting of a large number of identical neural networks
organised in a cellular array, and introduce a novel weight
sharing scheme based on the principle of internal symmetry
from particle physics. This Internal Symmetry Network is then
trained by self-play and temporal difference learning to perform
position evaluation for the game of Go. Lookahead search is
achieved by parallelizing the network on a video card, and
training an auxiliary network for heuristic pruning.

I. I NTRODUCTION

There has been a growing interest in computation systems
which enable global behavior to emerge from the interaction
of local rules. Cellular automata are one example of this,
but they are limited in having only a finite number of states
available at each cell.

A Cellular Neural Network (CNN) is a collection of
identical neural networks arranged in a cellular array [1].
CNNs are similar to cellular automata except that (1) the
state space at each cell is continuous rather than discrete,
and (2) the update rule is given by a neural network rather
than a lookup table or other discrete mapping. Recent years
have seen a growing interest in CNNs, particularly for image
processing [2]. Generally, the weights are determined by
hand-crafted design, or by global random search.

One task which seems very appropriate for this kind of
architecture is the ancient game of Go. Standard search
techniques generally run into trouble in the Go domain due
to the very large branching factor [3]. For this reason, Go
programs for a long time relied on symbolic reasoning rather
than search. However, with the steady increase in desktop
computing power a range of other approaches have recently
become feasible – most notably, a new breed of strong
programs based on UCT search [4].

Human players do make use of search methods in deciding
their moves, but they prune the search tree very heavily. Their
pruning mechanisms seem to rely on some kind of distributed
computation — perhaps making use of low-level processing
within the visual system. By mimicking this process with
a cellular neural network (or similar architecture) we could
potentially develop new Go programs employing heuristic
alpha-beta search, but using neural networks for move eval-
uation and selection.

A number of Go-playing programs have previously been
developed which incorporate neural networks in a variety
of ways [5] including supervised learning [6] and temporal

Note: this paper was submitted in 2009 to IEEE-TCIAIG, but was not
accepted for publication.

difference learning [7]. Cellular automata have also been
used in this context [8].

The main distinguishing feature of our approach is the use
of a cellular neural network architecture, and a novel weight
sharing arrangement which we call anInternal Symmetry
Network, inspired by the phenomenon of internal symmetry
in particle physics.

Sections II, III and IV outline the rules of Go, the
structure of Internal Symmetry Networks, and the input and
output encoding for the network. Section V summarizes our
initial experiments without tree search (previously reported
in [9]). Sections VI and VII explain how tree search is made
computationally feasible in this context, by parallelizing the
network on a video card and training an auxiliary network for
heuristic pruning. Sections VIII, IX and X describe prelimi-
nary experiments, modifications, evaluation and suggestions
for future work.

II. T HE GAME OF GO

The rules of Go are relatively simple to state but the
game is notoriously difficult to master. Two players take
turns placing white and black stones on the vertices of
a rectangular grid, each attempting to surround as much
territory as possible without being captured. The standard
size for a Go board is19×19 but games are also sometimes
played on boards of size9× 9 or 13× 13.

A contiguous set of stones of the same color (i.e. con-
nected along neighboring edges) is called agroup. Empty
vertices next to a group of stones are calledliberties of that
group. If the number of liberties of a group is reduced to
zero at any point during the game (because the group has
been surrounded by enemy stones), that group iscaptured.
This means that all the stones of that group are removed
from the board, leaving empty spaces where new stones can
later be played. You are not allowed to play into a position
which reduces the liberties of one of your own groups to
zero (suicide) unless this move at the same time reduces
the liberties of an enemy group to zero. In the latter case
the enemy group is captured (thus creating at least one new
liberty for your group). There is also a rule – called “ko” –
which prevents the board from being returned to a position
previously encountered in the same game. It is possible at any
time to passinstead of making a move. When both players
decide to pass one after the other, the game is over.

There are two popular scoring systems for Go: Chinese and
Japanese. Under Chinese rules, you score one point for each
of your own stones remaining on the board at the end, and
one point for each vertex surrounded by your own stones.

2

Vertices surrounded by a combination of white and black
stones do not score a point for either player. The Japanese
system is somewhat more complicated because you do not
score a point for stones remaining on the board, but only for
captured stones and for “territory”, where “territory” canbe
loosely defined as “vertices which both players realize would
be surrounded by your stones if the game were to continue”.

Chinese rules are easier to implement computationally, and
have therefore become the standard for many “computer-
only” Go servers like CGOS.

III. I NTERNAL SYMMETRY NETWORKS

One of the interesting features of Go is its high degree
of symmetry. Go has an approximate shift invariance, in
the sense that the same arrangement of stones occurring in
different places on the board is likely to lead to the next stone
being played in the same position within this formation. (The
invariance is only approximate because the strategy may be
affected by the edges and corners of the board.)

To capitalise on this property, we use an architecture
consisting of a large number of identical neural networks
organised on a cellular array. Each cell in the array corre-
sponds to a vertex on the Go board at which a stone may be
played. If the size of the board isn-by-n, with n = 2k + 1,
then the board can be considered as a latticeΛ of vertices
λ = [a, b] with −k ≤ a, b ≤ +k. It will be convenient
to denote byΛ the “extended” lattice which includes an
additional row of vertices around the edges of the board,
i.e. Λ = {[a, b]}−(k+1)≤a,b≤(k+1).

s

r

r r r

r r

s
s s

Fig. 1. The Dihedral groupD4 of symmetries of the Go board

In addition to shift invariance, the Go board can be rotated
or turned upside down in 8 different ways without affecting
the rules. We therefore design our system in such a way
that the network updates are invariant under this group
of symmetries. As noted in [7], this can be accomplished
by appropriate use of weight sharing [10], [11]. Here, we
employ a novel weight sharing arrangement, which we call
an Internal Symmetry Network.

The groupG of symmetries of the Go board is the dihedral
groupD4 of order 8. This group is generated by two elements
r ands — wherer represents a (counter-clockwise) rotation
of 90◦ ands is a reflection in the vertical axis (see Fig. 1).
The action ofD4 on Λ (or Λ) is given by

r[a, b] = [−b, a]

s[a, b] = [−a, b] (1)

We will useM andN to denote neighborhood structures in
the form of offset values:

M = {[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]},

N = M∪ {[1, 1], [−1, 1], [−1,−1], [1,−1]}.

When viewed as offsets from a particular vertex,M repre-
sents the vertex itself plus the neighboring vertices to its
EAST, NORTH, WEST and SOUTH; N includes these but
adds also the diagonal vertices to theNORTH-EAST, NORTH-
WEST, SOUTH-WESTandSOUTH-EAST. Assuming the action
of G on N (orM) is also given by Eqn(1), it is clear that
for g ∈ G, λ ∈ Λ andν ∈ N ,

g(λ+ ν) = g(λ) + g(ν).

Each cellλ = [a, b] ∈ Λ has its own set of input, hidden and
output units denoted byI[a,b], H[a,b] andO[a,b]. Each edge
cell λ = [a, b] ∈ Λ \ Λ also has input and hidden units, but
no output. The entire collection of input, hidden and output
unitsI, H andO for the whole network can thus be written
as

I = {I[a,b]}[a,b]∈Λ

H = {H[a,b]}[a,b]∈Λ

O = {O[a,b]}[a,b]∈Λ

For an individual cellλ ∈ Λ, the neural network update
equations are given by:

Hλ ← H(I)λ = tanh
(

BH +
∑

ν∈N

Vν
HII

λ+ν
)

Oλ ← O(I,H)λ = φ
(

BO+
∑

ν∈N

Vν
OII

λ+ν+Vν
OHH

λ+ν
)

whereφ is the sigmoid functionφ(z) = 1/(1 + e−z).
In other words, each cell is connected to its nine neighboring
cells (including diagonal neighbors) by input-to-hidden con-
nectionsVHI, hidden-to-output connectionsVOH and input-
to-output “shortcut” connectionsVOI. BH andBO represent
the “bias” at the hidden and output units. We assume that
for the edge cells (λ ∈ Λ \ Λ), the hidden unitsHλ remain
identically zero, while the inputsIλ take on special values
to indicate that they are off the edge of the board.

Any elementg ∈ G acts on the inputsI and output units
O by simply permuting the cells:

g(I) = { I g([a,b])}[a,b]∈Λ

g(O) = {Og([a,b])}[a,b]∈Λ

In addition to permuting the cells, it is possible forG to
act on some or all of the hidden unit activations within
each cell, in a manner analogous to the phenomenon of
internal symmetryin quantum physics. The groupD4 has
five irreducible representations, which we will label asTrivial
(T), Symmetrical(S), Diagonal (D), Chiral (C) andFaithful
(F). They are depicted visually in Fig. 2, and presented
algebraically via these equations:

3

Symmetrical

Faithful

Trivial

Diagonal Chiral

Fig. 2. The five irreducible representations ofD4

r(T) = T, s(T) = T
r(S) = -S, s(S) = S
r(D) = -D, s(D) = -D
r(C) = C, s(C) = -C
r(F)1= -F

2
, s(F)1= -F

1

r(F)2= F
1
, s(F)2= F

2

We consider, then, five types of hidden units, each with
its own group action determined by the above equations. In
general, an ISN can be characterized by a 5-tuple specify-
ing the number of each type of hidden node at each cell
(iT , iS , iD, iC , iF). Because it is 2-dimensional, hidden units
corresponding to the Faithful representation will occur in
pairs (F1, F2) with the group action “mixing” the activations
of F1 and F2. The composite hidden unit activation for a
single cell then becomes a cross product

H = TiT × SiS ×DiD × CiC × (F1 × F2)
iF

with the action ofG onH given by

g(H) = { g (H g([a,b]))}[a,b]∈Λ

We want the network to be invariant to the action ofG in
the sense that for allg ∈ G,

g
(

H(I)
)

= H(g(I))

g
(

O (I,H)
)

= O (g(I), g(H))

This invariance imposes certain constraints on the weights
of the network, which are outlined in the Appendix. In related
work [12] we have conducted experiments to compare the
effectiveness of different numbers and types of hidden units
for various image processing tasks, and also explored the
possibility of connecting each cell to itself and its four imme-
diate neighbors with recurrent hidden-to-hidden connections.
In the Go domain, we avoid recurrent connections because
a strictly feed-forward architecture allows the network to
be parallelized more effectively. Since the experiments are
computationally intensive, it is not possible to test all com-
binations of hidden units. For the experiments reported here,
we chooseiT = 4, iS = 2, iD = 2, iC = 0, and iF = 2,
making a total of 12 hidden units, 2310 connections per cell
and 714 free parameters in the overall system.

TABLE I
REWARD TO BE GAINED FOR EACH VERTEX, BASED ON THE

VALUE OF A CAPTURED STONE(c) AND A FINAL STONE (s)

Ownership State Rs

+ Rs

◦
Rs

•

white + (empty) 1 . 1+c

white ◦ (filled) s s s+c

atari + (empty) 0 -c c

black • (filled) -s -(s+c) -s

black + (empty) -1 -(1+c) .

IV. N ETWORK INPUT AND OUTPUT

The architecture we have described so far is of a general
nature and could be applied to other tasks such as image
processing as well as board games like Go. The input and
output encoding will depend on the task.

In the case of Go, we assign 14 inputs at each cell with
a discrete encoding to indicate the color of the stone occu-
pying that cell, and to provide some aggregate information
about the liberties of the group to which that stone belongs
(described in later Sections).

A. Output Encoding for Evaluation Network

Our initial experiments involved one output unit per cell,
trained to predict an appropriately scaled estimate of the
expected reward associated with that cell. However, we
eventually settled on a network with 7 outputs per cell,
which together try to predict the expected reward under two
different scoring systems.

Different scoring systems for Go can generally be charac-
terized by two parametersc ands, wherec is the reward for
each enemy stone captured ands is the reward for each live
stone remaining on the board at the end of the game. (We
assume a score of 1 for each vertex of territory that is owned
but empty at the end of the game). In this framework, the
Chinese scoring system corresponds toc = 0, s = 1 while
the Japanese system roughly corresponds toc = 1, s = 0,
but with special rules for ending the game early (discussed
below).

The reward to be gained at each board location is shown
in TABLE I. The location’s current state is indicated by the
subscripts at the top of each column, while the rows indicate
its ownership and final state at the end of the game. Two of
the table entries are blank, because we do not consider the
possibility of a white stone becoming a white liberty, or a
black stone becoming a black liberty.

We want our network to predict the reward for the two
special casess=1 and s=0, which are shown in Table II.
We first consider the task of predicting R1

+, R1
◦ and R1•. In

theory, these three values could all be predicted with one
output (since only one of them is applicable in any given
situation). However, we choose instead to use three separate
outputs Z+, Z◦ and Z•, in order to allow the network more

4

TABLE II
REWARD TO BE GAINED FOR EACH VERTEX,

FOR THE CASESs = 1 AND s = 0

R1
+ R1

◦
R1
•

R0
+ R0

◦
R0
•

white + 1 . 1+c 1 . 1+c

white ◦ 1 1 1+c 0 0 c

atari + 0 -c c 0 -c c

black • -1 -(1+c) -1 0 -c 0

black + -1 -(1+c) . -1 -(1+c) .

TABLE III
RELATIONSHIP BETWEEN REWARDS AND NETWORK OUTPUTS

R1
+= 2 Z+− 1 R0

+= A◦

+− A•

+

R1
◦
= (2+c)Z◦−(1+c) R0

◦
= c (Z◦-1)−A◦

R1
•
= (2+c)Z• − 1 R0

•
= c Z• + A•

Z+= (1 + R1
+)/ 2 A◦

+= max(R0+, 0)

A•

+= max(-R0+, 0)

Z◦ = (1+c+ R1
◦
)/(2+c) A◦ = c (Z◦-1)−R0

◦

Z• = (1 + R1
•
)/(2+c) A• = -cZ• + R0

•

flexibility in computing these disparate values. The future
status of a (currently) empty location is generally determined
by the influence of the surrounding stones, while that of a
filled location is determined by the likelihood of effectingor
avoiding caputure.

It is convenient to linearly re-scale the network outputs Z+,
Z◦ and Z• from [0,1] to the new ranges [-1,1], [-(1+c),1] and
[-1,1+c], respectively – since these are the natural ranges for
the values of R1+, R1

◦ and R1• (top left of Table III). During
training, the target values can be recovered by the inverse
scaling (lower left of Table III).

In order to predict R0+, R0
◦ and R0•, we add four additional

outputs A◦+, A•
+, A◦ and A•, and employ the transformations

shown in the right column of Table III.
The target values for these seven outputs will then be as
shown in Table IV. The current state of the vertex is indicated
by the subscripts at the top of each column, while the rows
indicate its ownership and final state at the end of the game.

Each of the seven outputs can informally be interpreted as

TABLE IV
TARGET VALUES FOR THE SEVEN NETWORK OUTPUTS

Z+ Z◦ Z• A◦

+ A•

+ A◦ A•

White + 1 . 1 1 0 . 1
White ◦ 1 1 1 0 0 0 0

Atari + 1
2

1
2+c

1+c

2+c
0 0 c

2+c

c

2+c

Black • 0 0 0 0 0 0 0
Black + 0 0 . 0 1 1 .

a likelihood:

output interpreted as likelihood of ...
Z+ white gaining territory
Z◦ white avoiding capture
Z• white effecting capture
A◦

+ white making an eye
A•

+ black making an eye
A◦ white stone captured, leading to black eye
A• black stone captured, leading to white eye

Note that, although there are 7 outputs, in practice only
two or three of them need to be computed for each location
(Z+, A◦

+ and A•+ if the location is empty, Z◦ and A◦ if
it contains a white stone, Z• and A• if it contains a black
stone).

B. Clarifying the Final Status

The ending of a Go game has traditionally been by mutual
agreement between the two players. In the case of Japanese
rules, this “early” ending of the game has an impact on
the final score – because it allows each player to claim the
reward for capturing “dead” stones, without sacrificing the
territory that would theoretically be lost in the process of
capturing them. In the case of Chinese rules, ending the
game early has no effect on the final score, but still makes it
difficult to predict whether a given location will be filled
or empty at the end of the game. In order to train our
networks, we need to have a well-defined outcome so that
the final status of each location can be sensibly predicted –
not only in terms of territory, but also in terms of whether
it is filled or empty. We achieve this by adopting a novel
scoring system, for training purposes, which is somewhere
between the Chinese and Japanese systems, by awarding 0.4
points for each captured stone, and 0.4 points for each stone
remaining on the board at the end of the game (i.e. setting
the above scoring parameters toc = s = 0.4). This scoring
system encourages each player to chip away at the opponent’s
liberties during the endgame, without filling in any of their
own liberties unnecessarily. Thus, all remaining blank areas
will be carved up into isolated eyes, with each player trying
to maximise their own eyes while minimizing those of the
opponent.

C. Input Encoding

We allocate 14 input units to each board location. Exactly
one of these inputs will be “active” for any given location and
time step. The active unit will be set to1, while the other
13 units will be set to0. This kind of “1-in-n” encoding
facilitates rapid computation.

If a white stone is present, one of the inputs in the range
1-6 will be active. If a black stone is present, an input in
the range 7-12 will be active. Input 13 indicates that this
location is empty (no stone), while input 14 indicates that
this location is off the edge of the board.

When a white or black stone is present, the choice of
input within the range 1-6 or 7-12 is intended to provide the

5

network with some aggregate information about the liberties
of the group to which that stone belongs.

In our early experiments, each stone was classified into
one of 6 classes, depending on the total number of liberties
of its group. This led to poor network performance, because
all liberties were treated equally. We realised it would be
advantageous to modify the classification by weighting each
liberty according to (a) the likelihood of it being retained
as territory, and (b) the likelihood of it remaining a liberty
until the end of the game, thus becoming an eye. Since these
likelihoods have already been estimated by the network at
the previous timestep, we can use this information to classify
groups at the current timestep. Specifically, for each white
(resp. black) group, we define theeye-likelihoodΣZ to be the
sum of Z+ (resp. (1-Z+)), and theexpansion-likelihoodΣA
be the sum of A◦+ (resp. A•+) for all liberties of that group.
The group can then be classified into one of 6 classes, as
shown in Fig. 3.

1.5

2 4

3 5 6ΣA

1

ZΣ1.50.75

0.75

Fig. 3. Categorization of groups into classes, based on eye-likelihood ΣZ
and expansion-likelihoodΣA.

Roughly speaking,ΣZ estimates the number of eyes that
are likely to be made from current liberties of the group,
while ΣA estimates the number of “openings”, i.e. potential
avenues for expansion, or connection to other groups. In this
context, the six categories can roughly be characterized as:

Class 1: no eyes and no openings
Class 2: no eyes, and only one opening
Class 3: no eyes, but at least two openings
Class 4: one eye, but no opening
Class 5: one eye, plus at least one opening
Class 6: at least two eyes

D. Implicit Recurrence and Adjustment

Although the network itself is feed-forward, the use of
outputs from the previous time step for categorization ef-
fectively adds a kind of “implicit recurrence” to the system.
Thus, even though each output cell isdirectly dependent only
on the stones in a local neighborhood, the categories 1 to
6 (above) implicitly give it access to non-local information
about the number (and type) of liberties for the groups to
which these stones belong.

On account of being computed at the previous timestep,
the likelihoods Z and A are always slightly out of date,
because two new stones have been placed on the board, and

captures may have taken place, creating new liberties for the
capturing group(s). To adjust for this, we slightly increment
or decrement the likelihoods Z and A, for locations adjacent
to the newly-placed stones. For each group,ΣZ and ΣA
are also augmented to include the likelihood of capturing a
neighboring enemy group (estimated conservatively as the
minimumvalue of Z, among the stones in the enemy group).

V. NETWORK TRAINING

The Evaluation Network was trained by self-play and
temporal difference learning [13], [14], [7] in the form of
TD(λ) with λ = 0.9. Each output was trained using cross
entropy minimization, with a learning rate of 0.000005.
Although this learning rate may appear small, the massive
weight sharing in the Internal Symmetry Network causes
differentials to accumulate at every single vertex, therefore
adding up to a substantial weight adjustment by the end of
the game.

The overall board evaluationR is the sum of the expected
rewards for all the individual board locations. Moves were
chosen according to a Boltzman distribution – meaning that
the probability of each (legal) move is proportional toeβR,
whereR is the evaluation of the board resulting from that
move. The Boltzman constantβ was set to 4 during the
training.

The shortcut connections (i.e. direct from input to output)
were trained in a preliminary phase, to provide a linear player
with a basic level of functionality (and to ensure that the
games would eventually terminate). All the weights of the
network were then opened up for 860,000 games of training
on a9× 9 board. The training time was approximately half
a second for each game, or five days in total, on a 2.66 GHz
Mac Pro.

For evaluation, networks at intervals of 20K were extracted
and played 10 games against each other pairwise in a round-
robin tournament. For the tournament, moves were again
selected from a Boltzman distribution but withβ = 20.
Standard Chinese rules were used, with a komi of 3.5. The
results are shown in Fig. 4 where we see a noisy but generally
upward trend in performance.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500 600 700 800 900

line 1

Fig. 4. Percentage of wins in round robin tournament, for networks from
0 to 860K

Our Internal Symmetry Network architecture has the ad-
vantage that, even when trained only on the9×9 board size,
the network can then be made to play on any sized board
without changing the actual weights.

6

We extracted the best network (at epoch 580K) and played
several games against it on boards of size9×9 and19×19.
Generally, the network can be observed to perform captures,
threats, blocking moves, etc. and its choice of moves seems
quite reasonable considering that its decisions are based only
on a single board evaluation, with no lookahead.

The next two sections describe our attempts to implement
alpha-beta search with heuristic pruning. The necessary
speed is achieved by parallelizing the network on a video
card.

VI. PARALLELIZATION

We have parallelized our neural network code on an
NVIDIA GeForce 8800 graphics card, using the CUDA
programming framework.

The CUDA framework requires an overall computation to
be divided into a large number of parallelthreads, with the
threads organized intoblocks. An exact multiple of 64 threads
per block is recommended, in order to gain the advantages
of “coalesced” memory access. Memory on the device is
divided into shared memory – accessible only to threads
within a particular block – andglobalmemory – accessible to
all threads. Global memory is slower to access than shared
memory, but still faster than accessing the memory of the
host machine.

In our case, the network activations are computed in two
separate kernel invocations – one for the hidden layer, and
one for the output layer. We always use exactly 64 threads
per block.

For the hidden layer invocation, the number of blocks is
equal to the number of hidden units multiplied by⌈n

2

64 ⌉,
wheren is the board size. Each block is assigned to compute
one of the 12 hidden units, for a set of 64 contiguous
board locations. The weights associated with the relevant
hidden unit are loaded into shared memory, as well as the
inputs for the 64 assigned board locations, together with
the 32 locations above and below them (to ensure that all
neighboring board locations are included). Because of the
1-in-n input encoding, the hidden unit computation for each
thread consists of a series of array lookups and floating-point
additions, followed by a single application of the hyperbolic
tangent function. The hidden unit activations are then stored
to global memory.

The output layer invocation is similar. Although there are
7 outputs, in practice only 3 of them need to be computed for
any particular board location, so the number of threads is3×
⌈n

2

64 ⌉. Each thread first combines the input-to-output weights
with a series of array lookups and floating point additions;
it then reads the relevant hidden unit activations from global
memory, multiplies each of them by an appropriate weight,
and applies the sigmoid function to the grand total.

This parallel implementation increases the speed of evalu-
ation to 7000 positions per second for the19×19 board size
(compared to 1600 positions per second for the non-parallel
implementation). This is fast enough to allow a full alpha-
beta search to depth 3, or a heuristically pruned search to
depth 5.

VII. SELECTION NETWORK AND SEARCH

The evaluation speed of 7000 positions per second is fast
enough to allow alpha-beta search. But, if we want to search
more than 2 or 3 ply, we need to prune the tree heuristically
in order to tame the very large branching factor. For this
purpose, we train an auxiliarySelection Network(SelNet),
to be used in conjunction with theEvaluation Network
(EvalNet) described in Sections IV and V.

The inputs to the SelNet are the same as those for the
EvalNet, but the SelNet has only one output unit for each
board location. While the EvalNet is intended to give an
absolute evaluation for a single board position, the SelNetis
indended to give arelative estimate, for all board locations
simultaneously, of the incremental value of playing a stone
into that location. In other words, the task of the SelNet
is to estimate how much the score would increase, for
each possible move, compared to the “benchmark” score of
choosing toPASS (thereby leaving the board as it is). Each
output of the SelNet is taken as a raw value, with no sigmoid
or other transfer function applied.

Note also that the SelNet is appliedbefore making the
current move, while the EvalNet is appliedafterwards.
This means that the adjustments to Z and A described in
Section IV-D only need to take account of one new stone
when applying the SelNet, rather than two new stones when
applying the EvalNet.

In order to generate training data for the SelNet, the
EvalNet is made to play 10,000 games against itself on a
13 × 13 board, with Boltzman constantβ = 8. As each
move is played, the EvalNet’s evaluation of all possible
(alternative) moves are dumped to a text file.

LetSλ be the output of the SelNet at locationλ, and letRλ

be the (aggregated) output of the EvalNet, which estimates
the value of the board position resulting from a stone played
at locationλ. The EvalNet and SelNet thereby determine
Boltzman distributions{pλ} and{qλ} given by

pλ =
eβRλ

∑

µ e
βRµ

, qλ =
eβSλ

∑

µ e
βSµ

.

The sum is over allλ ∈ PASS∪ Λ, where RPASS is the
evaluation of the board in its current state, andSPASS = 0
by convention.

The SelNet is then trained by supervised learning. The
cost function is the Külback-Leibler divergence between the
two Bolzman distributions, given by

DKL =
∑

λ

pλ log(
pλ
qλ

)

=
∑

λ

pλ log pλ −
∑

λ

pλ log(
eβSλ

∑

µ e
βSµ

)

=
∑

λ

pλ log pλ − (
∑

λ

pλβSλ) + log(
∑

µ

eβSµ)

We then have

7

∂

∂Sλ

DKL = −βpλ +
βeβSλ

∑

µ e
βSµ

= β(qλ − pλ)

This makes sense intuitively, because it concentrates the
effort on moves for which eitherpλ or qλ is large (i.e. moves
that are ranked highly by either the EvalNet or SelNet).

VIII. P RELIMINARY RESULTS AND MODIFICATIONS

Our network played on the19 × 19 CGOS server for
several days, under the nameFishNet1. Unfortunately,
it performed very poorly, with a rating of about 850 (see
Table V). There are only about a dozen programs which
play regularly on the19 × 19 CGOS server. Two of the
low-ranking players among them areAverageLib – which
uses a simple heuristic function – andAmigoGtp – an
updated version of a program originally written for the
Commodore Amiga.FishNet1 only won about 20% of its
games againstAverageLib and 15% of its games against
AmigoGtp. A careful study of these games gave us clues
as to how the network’s performance might be improved.
Fig. 5 shows a game betweenFishNet1 andAmigoGtp.
We also analysed the self-play games (without lookahead)
by generating graphs in the (ΣZ,ΣA) plane for groups that
ultimately survived, and for those which were later captured.
From this, we made two important observations:

A. Changing the way Z-score is computed

We noticed that, in the self-play games, many groups
ultimately died, despite satisfying the condition that the
eye-likelihoodΣZ > 1.5. On closer inspection, it turned
out that these groups had a large number of “low-quality”
liberties with little or no chance of becoming eyes. Groups of
this kind were also observed in games betweenFishNet1
and AmigoGtp (see Fig. 5). Although it is obvious (to
humans!) that the likelihood of making an eye from these
liberties is effectively zero, the network was giving estimated
likelihoods in the range of 0.05 to 0.15 for each of them. A
large number of these small likelihoods can then aggregate to
a combined likelihoodΣZ greater than 1.5. To remedy this,
we define a modified Z-scoreΣ′Z, by including in the sum
only those liberties whose likelihood of becoming an eye is
greater than 0.2. This modiified Z-score, with our original
thresholds of 0.75 and 1.5, turned out to give a much better
prediction of which groups would ultimately survive.

B. Modification to A-score

We now turn our attention to the classification of groups
for whichΣ′Z < 0.75 . In our original scheme, these groups
were classified according to their “expansion-likelihood”or
A-scoreΣA, with thresholds of 0.75 and 1.5 .

Fig. 6 plots the likelihood of eventual capture as a function
of A-score, in the self-play games, for groups withΣ′Z <

Fig. 5. Game betweenFishNet1 (black) andAmigoGtp (white) at move
61 (above) and 214 (below).

0.75 (categorized according to the number of stones in the
group).

We see that (1) our originalΣA thresholds of 0.75 and 1.5
were much too low to give a useful prediction, and (2) the
thresholds ought to vary according to the number of stones
in the group (with higher thresholds for larger groups).

This also explains certain deleterious behaviors exhibited
by the network. Looking at the early stages of the game
in Fig. 5, we see thatAmigoGtp (white) has placed sin-

8

0 1 2 3 4 5
0

0.25

0.5

0.75

1

Σ A

pr
ob

ab
ili

ty
 o

f c
ap

tu
re

 1 stone
 2 stones
 3 stones
 4 or more

Fig. 6. Likelihood of eventual capture, as a function ofΣA, for groups
with Σ′Z < 0.75 (categorized according to the number of stones in the
group).

1 stone

A

Σ ’Z Σ ’Z Σ ’ZΣ ’Z

1

2

3 5 6 66

1

5 65 6

11 1

2
2

2

2
3

4

5 5

3

3

4

3

Original 3 stones

4

4
4

ΣZ
2 stones 4 or more stones

Σ

Fig. 7. Categorization of groups, based on the (modified) eye-likelihood
Σ(′)Z, the expansion-likelihoodΣA and the number of stones in the group.

gle stones nicely around the edge of the board, whereas
FishNet1 (black) has avoided placing stones in isolation
and instead places its stones together in groups of 2 or 3.
This is because a 2-stone group in an open area of the board
will fall into Class 5, whereas a 1-stone group would fall
into Class 3 (with an A-score of approximately 2.6).

In general, a single stone in an open area of the board has
a good chance of survival and ought to be rated highly. In
contrast, the snake-like (black) groups appearing in Fig. 5
have virtually no chance of survival, but because of the
large number of low-quality liberties they may easily accrue
an expansion likelihood higher than1.5. Under our original
scheme, these two situations are “confused” into the same
class (3), causing the network to have an optimistic view of
the snake-like group, and a pessimistic view of the single-
stone group. As a result, in the mid-game the network fails
to adequately defend some of its groups, thereby allowing
them to be captured.

Unfortunately, the performance of the network virtually
did not improve at all in moving from no lookahead to 3-
or 5-move lookahead (see Table V). In other words, the
misconceptions in the network’s evaluation (discussed above)
are quite fundamental, and are not of the kind that can be
“cured” by deeper search.

TABLE V
RATINGS ON 19 × 19 CGOS SERVER

Player No lookahead 5-move lookahead
Fishnet 1 850± 50 850± 50
Fishnet 2 850± 50 1050 ± 50

IX. M ODIFIED NETWORK

A new evaluation network was trained for 400K epochs,
using the modified Z-score and revised A-score thresholds
outlined in Section VIII. The new thresholds, shown in Fig. 7,
were chosen at the places where the graphs in Fig. 6 cross
the boundaries of 0.75, 0.5 and 0.25 (probability of capture).

To make the training more stable, we introduced the
following Negatrain enhancement: in our original experi-
ments, for training purposes, the network only considered the
evaluation of everysecondboard position, i.e. the position
after each move by a particular player. In the new exper-
iments, the position afterevery move was considered; the
likelihoods generated by the opponent network were used
for the positions following each opponent move. This did
indeed seem to make the training more stable, and allowed
us to increase the learning rate to 0.0001. The parameterλ
was also increased from 0.9 to 0.95 so that the new network
would “look equally far into the future”.

As before, 10,000 self-play games by the new network
were used to train a selection network, employing the same
modified Z-score and revised A-score thresholds.

The new network played on CGOS under the name
Fishnet2. When playing with no lookahead, it achived
approximately the same rating asFishnet1. However, with
5-move lookahead, the rating increased by 200 ELO, from
850 to 1050 (see Table V).FishNet2 (with lookahead)
wins approximately 85% of its games againstAverageLib,
and 45% of its games againstAmigoGtp.

Fig. 8 shows a game betweenFishNet2 and
AmigoGtp. We see that the level of play represents a sub-
stantial improvement overFishnet1, both in the opening
and in the later stages of the game.

X. CONCLUSION

We have demonstrated that Internal Symmetry Networks
can be trained to play the game of Go using self-play and
temporal difference learning. Lookahead search is achived
by parallelizing the network on a video card, and training an
auxiliary network for heuristic pruning.

The inclusion of 5-move lookahead search increases the
performance by approximately 200 ELO, giving hope that
deeper search enabled by faster computation and greater
parallelization may lead to continued improvement. We have
identified two other main areas for future research:
1. Concerning the implicit recurrence of the system (Sec-
tion IV-D) we currently compute the likelihoods Z and A
from the previous board position, and try to account for
the two subsequent moves by making slight ajustments to
the values at locations adjacent to the two new stones. This

9

Fig. 8. Game betweenFishNet2 (black) andAmigoGtp (white).

gives a sensible result in most cases, but seems to cause
problems in certain specific situations, where strategic battles
are played out on the edge of the board. In future work,
we plan to use the network itself to compute the updated
likelihoods in a more methodical way.

2. In our existing architecture, each hidden unit is connected
only to its neighbors in a3 × 3 window. We have recently
found that, for image processing tasks, the performance can
be improved by extending this to a5 × 5 window (with
appropriate symmetry constraints). We plan to soon apply
the same modification in the Go domain.

APPENDIX: WEIGHT SHARING

The constraints on the various network connections are out-
lined below – with neighborhood relationships abbreviatedto
E (EAST), N (NORTH), W (WEST), S (SOUTH), NE (NORTH

EAST), NW (NORTH WEST), SW (SOUTH WEST), SE (SOUTH

EAST) and O (ORIGINAL).

Vν
OH =

[

Vν
OT Vν

OS Vν
OD Vν

OC Vν
OF

1

Vν
OF

2

]

Vν
HI =

[

Vν
TI Vν

SI Vν
DI Vν

CI Vν
F
1
I Vν

F
2
I

]T

VE
OI = VN

OI = VW
OI = VS

OI , VNE
OI = VNW

OI = VSW
OI = VSE

OI

VE
OT = VN

OT = VW
OT = VS

OT , VNE
OT= VNW

OT= VSW
OT= VSE

OT

VE
TI = VN

TI = VW
TI = VS

TI , VNE
TI = VNW

TI = VSW
TI = VSE

TI

VO
OF

1

= VO
OF

2

= VO
F
1
I = VO

F
2
I = 0

VE
OF

1

= VN
OF

2

= -VW
OF

1

= -VS
OF

2

= VE
F
1
I = VN

F
2
I= -VW

F
1
I= -VS

F
2
I

VE
OF

2

= VN
OF

1

= VW
OF

2

= VS
OF

1

= VE
F
2
I = VN

F
1
I= VW

F
2
I= VS

F
1
I = 0

VNE
OF

1

= -VNW
OF

1

= -VSW
OF

1

= VSE
OF

1

= VNE
OF

2

= VNW
OF

2

= -VSW
OF

2

= -VSE
OF

2

VNE
F
1
I = -VNW

F
1
I = -VSW

F
1
I = VSE

F
1
I = VNE

F
2
I = VNW

F
2
I= -VSW

F
2
I= -VSE

F
2
I

VE
OS = -VN

OS = VW
OS = -VS

OS , VNE
OD= -VNW

OD= VSW
OD= -VSE

OD

VE
SI = -VN

SI = VW
SI = -VS

SI , VNE
DI = -VNW

DI = VSW
DI = -VSE

DI

Vµ
OD = Vµ

DI = 0, µ ∈ {O,E,N,W, S}

V ν
OS = Vν

SI = 0, ν ∈ {O,NE,NW, SW, SE}

V ν
OC = Vν

CI = 0, ν ∈ {O,E,N,W, S,NE,NW, SW, SE}

REFERENCES

[1] L.Chua & L.Yang, 1988. Cellular Neural Networks: Theory, IEEE
Trans. on Circuits and Systems35(10), pp. 1257–1272.

[2] L.Chua & T.Roska, 2002.Cellular Neural Networks and Visual
Computing, Cambridge University Press.

[3] J.Burmeister & J.Wiles, 1995. The challenge of Go as a domain for
AI research, Proceedings of the Third Australian and New Zealand
Conference on Intelligent Information Systems.

[4] S.Gelly & Y.Wang, 2006. Exploration exploitation in Go:UCT for
Monte-Carlo Go, Proceedings of Neural Information Processing Sys-
tems Conference.

[5] M.Enzenberger, 1996. The integration of a priori knowledge into a Go
playing neural network, www.cgl.ucsf.edu/go/Programs/
neurogo-html/NeuroGo.html

[6] F.A.Dahl, 2001. Honte, a Go-playing program using neural networks,
in J.Fürnkranz & M.Kubat (Eds.)Machines that learn to Play Games,
Chapter 10, pp. 205–223. Huntington.

[7] N.Schraudolph, P.Dayan & T.Sejnowski, 1994. Temporal difference
learning of position evaluation in the game of Go, InAdvances in
Neural Information Processing 6, Morgan Kaufmann, 817–824.

[8] S.Welsh & T.Bossomaier, 1999. Evolving cellular automata tools for
the game of Go, Proceedings of the Third Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, 159–166.

[9] A.Blair, 2008. Learning Position Evaluation for Go withInternal
Symmetry Networks,Proc. 2008 IEEE Symposium on Computational
Intelligence and Games, pp. 199-204.

[10] Y.LeCun, B.Boser, J.Denker, D.Henderson, R.Howard, W.Hubbard &
L.Jackel, 1989. Backpropagation applied to handwritten character
recognition, Neural Computation5, 541–551.

[11] T.Schaul & J.Schmidhuber, 2008. A Scalable Neural Network Archi-
tecture for Board Games,Proc. 2008 IEEE Symposium on Computa-
tional Intelligence and Games.

[12] A.Blair & G.Li, 2009. Training of Recurrent Internal Symmetry Net-
works by Backpropagation,Proc. 2009 International Joint Conference
on Neural Networks(to appear).

[13] R.Sutton, 1988. Learning to Predict by the Methods of Temporal
Differences,Machine Learning3, 9–44.

[14] G.Tesauro, 1992. Practical Issues in Temporal Difference Learning,
Machine Learnin8, 257–277.

