

Abstract - This paper compares the efficacy of different
crossover operators for Grammatical Evolution across a typical
numer ic regression problem and a typical data classification
problem. Grammatical Evolution is an extension of Genetic
Programming, in that it is an algor ithm for evolving complete
programs in an arbitrary language. Each of the two main
crossover operators struggles (for different reasons) to achieve
100% correct solutions. A mechanism is proposed, allowing the
evolutionary algor ithm to self-select the type of crossover
util ised and this is shown to improve the rate of generating
100% successful solutions.

I. INTRODUCTION
Both genetic algorithms (GA) and genetic programming

(GP) stress the role of the crossover operator in searching the
problem space. There are a large number of variations on the
crossover that can be performed in GA and variation in the
choice and frequency of the subtree crossover points in GP.
There has been debate over which crossover operator is
better or if, say, one type is better for small populations and
another better with more diverged populations [2]. We
believe the question that arises is: whether certain crossover
types are more effective in solving different types of
problems and whether such operators might be more
effectively utilised at different stages of the problem solving
attempt. If this is the case then, given that we must assume
we have no a priori knowledge of the specific task domain,
is there a way we can use the evolutionary algorithm to
select the best crossover for the problem at hand?

This paper discusses the previous work on self-adaptive
crossover operators in GA and GP. It then recaps on how
Grammatical Evolution (GE) extends GP to allow the use of
radically different crossover operators rather than variations
on location and number of sub-tree crossover points. It then
describes the numeric regression domain and the
classification problem used to illustrate the different results
obtained from the two crossover operators analysed in this
paper and delevel

 adaptive methods which
modify the way an individual itself is treated by the system
(e.g. its mutation rate or method of crossover); and (iii)
component-level adaptive methods which alter one or more
of the components of an individual.

A. Population-Level Adaptation
Population-level techniques utilise a higher-level analysis

of the overall population in an attempt to alter and/or guide
the evolutionary process. In other words an analysis of the
population as a whole is used to adapt the crossover
technique. For instance [4] describes a system where the
statistical distribution of alleles in the population is used to
adjust the swapping probandividual

-Level Adaptation
Several papers have analysed individual level adaptation

in both GA and GP.
1) Individual-level adaptation in GA

There have been a number of papers relating to individual
level adaptation, perhaps the most relevant to this paper
being [6]. In [6] Spears appended to each individual a one-
bit tag that allowed the individual to choose between a two-
point and a uniform crossover in a GA system. As discussed
by Spears the types of crossover represented by two-point
crossover and uniform crossover are radically different in
their effect on the GA representation. With two point
crossover building blocks may well be maintained, whereas
with uniform crossover building blocks will almost certainly
be disrupted unless the populations are highly converged.
Spears noted a difference between the two-point and the
uniform crossover operators not so much between the two
problems examined, but rather on the size of the populations
and the level of redundant bits utilised in different runs. This
is primarily down to the fact that for half of the problems
90% of the bits were redundant, only the first 10% having
any impact on the solution. With traditional two-point
crossover in such a system most crossovers (90% of all

A Self-Selecting Crossover Operator

Robin Harper and Alan Blair, Member, IEEE

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1420

crossovers) would have no impact. For this reason we
believe that the impact of the self-adaptation he implemented
was somewhat muted. In addition when he removed the self-
adaptation relating to the different crossover points and
instead applied them randomly, largely the same benefits
were observed. Spears paper is geared towards GA.
Although the questions explored by Spears are similar to
those discussed in this paper, the representation of the
problems chosen by him were such that, arguably, the two
point operator’s effectiveness was highly constrained by the
unlikelihood of a crossover occurring in the active part of the
genome.

2) Individual-level adaptation in GP
With respect to previous individual-level adaptation in

GP, Angeline [7] introduces a modification to the standard
crossover in GP that allows two types of self-adaptation. The
first, which he terms Selective Self-Adaptive Crossover
(SSAC) is a method that utilises individual-level adaptation.
SSAC involves keeping associated with each parse tree a
parse tree of probabilities; these probabilities impact the
choice of the crossover point. The second, Self-Adaptive
Multi-Crossover (SAMC), keeps a similar mirror parse tree
of probabilities, but each probability equates to the chance of
a crossover occurring at that point (i.e. rather than
influencing the choice of where the one crossover point
occurs as in SSAC, with SAMC multiple crossover points
can occur, each point occurring with a probability
determined by the corresponding point in the mirror
probability parse tree). Unlike SSAC, SAMC is a component
level adaptation (as explained in section II.C).

Whilst the results obtained by Angeline are promising
they differ from the study in this paper as they are a means
of adapting the way the crossover works rather than
choosing between different crossover operators. For
instance, in all the cases explored by Angeline, the different
crossovers act to swap one or more complete subtrees – there
is no equivalent of the uniform crossover or the “ripple
crossover” of GE [14]. Whilst the self-adaptation is designed
to make the appropriate type of crossover more efficient, and
in the test domains analysed – with certain caveats – this
appears to be the case, our interest is more in using the
evolutionary algorithm to choose between different
crossover types (which appear to traverse the problem
domains in different ways) in an attempt to make the
algorithm more robust for problem domains where one type
of crossover operator on its own may have problems.

C. Component Level Adaptation.
Arguably, the SAMC operator introduced by Angeline

(see II.B.2) is a component level operator in GP, since it
impacts on the probabilities of any one component (or node
of the expression tree) being swapped during crossover.
Whilst this operator certainly can have a radical impact on
the crossover (allowing multiple nodes to be swapped in any
one operation) it still utilises the same principle of crossover,
namely the swapping over of subtrees.

Otherwise component level adaptation would appear to

have been most extensively studied in EP and ES and is of
limited relevance to the aims of the paper. The reader is
referred to [3] for a fuller discussion of this type of
adaptation.

III. GRAMMATICAL EVOLUTION

A. Introduction
Grammatical Evolution (GE) is a form of genetic

programming which utilises the evolutionary algorithm to
evolve code written in any language, provided the grammar
for the language can be expressed in a Backus Naur Form
(BNF) style of notation [8]. Traditional genetic
programming, as exemplified by Koza [9] has the
requirement of “Closure”. Closure, as defined by Koza, is
used to indicate that a particular function set should be well
defined for any combination of arguments. Previous work by
Montana [10] suggests that superior results can be achieved
if the limitation of “closure” required in traditional genetic
programming can be eliminated, for example through typing.
Whigham [11] demonstrates the use of context free
grammars to define the structure of the programming
language and thereby overcome the requirement of closure
(the typing being a natural consequence of evolving
programs in accordance with the grammar). GE utilises the
advantages of grammatical programming, but, unlike the
method proposed by Whigham, separates the grammar from
the underlying representation (or as this is commonly
referred to; the genotype from the phenotype).

It has been argued that the separation of genotype from
phenotype allows unconstrained genotypes (and
unconstrained operations on genotypes) to map to
syntactically correct phenotypes. Keller [12] presents
empirical results demonstrating the benefit of this type of
mapping. One of the interesting aspects of having such a
simple underlying genotype as GE (a bit string) is that it is
possible to design a number of operators that act on this
simple bit string. For instance crossovers can be designed
which mirror uniform crossover, single bit crossover and
crossovers which swap complete expansions in the
underlying grammar, each of which represent (after the
genotype to phenotype mapping has been performed)
radically different methods of searching the phenotype
space. It is likely that different crossovers have advantages
in different fitness landscapes. The question that this paper
explores is whether there is a way to allow the choice of
which crossover to apply to come under the control of the
genetic algorithm itself.

The way that GE maps the genotype to the phenotype is
discussed in the next subsection. The different types of
crossovers that are used in this paper are discussed in
subsection III.C.

B. Grammatical Evolution – the mapping
Rather than representing programs as parse trees GE

utilises a linear genome representation to drive the derivation
of the encoded program from the rules of an arbitrary BNF

grammar. Typically the genome (being a variable length bit
string) is split up into 8 bit codons and these codons are used
sequentially to drive the choices of which branch of the
grammar to follow. The maximum value of the codon is
typically many times larger than the number of possible
branches for any particular non-terminal in the grammar and
a mod operator is utilised to constrain it to the required
number.

Using, by way of example, the numerical regression
grammar contained in listing 1; the following illustrates the
translation process. If an individual had the following initial
DNA and codon pattern

DNA: 00100001 00010100 00100000 00000001 00010000…
Codons: 33 20 32 1 16…

it would be translated as follows: No codon would be used
for the first expansion, since there is only one choice:
<code> (being the start of the parse) is expanded to
<i_value>. The initial codon of the genome would be used to
determine which of the five possible expansions to apply to
<i_value>. The value of 33 would be MOD’d with five
(since there are five choices) to give a value of 3. The fourth
choice (<i_value><op><i_value>) would then be chosen.
The expression now is “<i_value><op><i_value>”. The first
non-terminal <i_value> is expanded by using the next codon
(20). <i_value> has five choices, so 20 would be MOD’d
with 5, to give zero and XVAL would be chosen. The
expression is now “XVAL <op> <i_value>”. The next non-
terminal (<op>) is expanded using the codon 32. 32 Mod 4 =
0, so “+” is chosen, leaving us with “XVAL + <i_value>”.
<i_value> is then expanded using the next codon (1), to give
us <number>. The expression is now “XVAL + <number>”.
The next three codons are used to decode the three digits in
number, giving us, say, “XVAL + 0.621” There being no
further non-terminals in the expression the expansion is
complete. Any remaining codons are not used.

If the expression can be fully expanded by the available
codons (i.e. the expansion reaches a stage where there are no
non-terminals) the individual is valid; if the codons run out
before the expression is fully expanded the individual is
invalid and assigned a fitness of zero, effectively removing it
from the population.

code: i_value

i_value: XVAL
 | number
 | i_value op i_value
 | (i_value op i_value)
 | - i_value

number: 0. digit digit digit

digit: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

op: + | - | * | %

Listing 1 – Extract of Numerical Regression Grammar

C. Crossover Operators
In previous work [13] we have explored a number of

different crossovers which can be utilised in GE. Here we
briefly describe the two crossover types that are utilised in

this paper.
• Single Point Bit Operator: The standard GE crossover

[8] is a simple one-point operator. Here random points
are chosen in the genotype (the bit string) and the two
parents have their “tails” swapped. Our
implementation of the operator constrains the choice
of crossover point to occur during the coding part of
the genome (i.e. in the part of the genome which is
used to “decode” the grammar). As illustrated in
Diagram 1 the values of the codons in the tails being
swapped may change (unless the crossover points
happen to fall on codon boundaries). In addition the
codons in the new tails may be used to interpret a
different part of the grammar than the part they
interpreted in their parent. Given this, the single point
bit crossover has been criticised on the grounds that it
is seemingly destructive of the information contained
in the second contributing parent. However, despite
the apparent destructive effect of the crossover, its
efficacy as a search operator has been confirmed in
[14].

• LHS Operator: The LHS crossover acts as a two-point
crossover whereby the expansion of a rule of the
grammar (or the Left Hand Side of a grammatical rule)
is replaced by an expansion of the same rule found in
the other parent. The mechanism by which this is
achieved is fully described in [13]. The LHS crossover
is similar to the traditional GP sub-tree crossover, save
that it operates on the parse tree rather than the
complete phenotype.

Of the two crossover operators used in this paper the
Single Point Bit Operator is arguably the most destructive, as
it preserves neither the codon values of the tail nor their
context. The LHS Operator is the least destructive of the
operators since codon sequences are swapped whilst
preserving their values and the part of the grammar they are
being used to interpret.

An important point to note for the purposes of this paper
is that these two crossover operators represent quite distinct
methods of searching the phenotype space.

D. The GE environment
The following constant GE strategy was utilised:
• Selection of individuals was based on a probability

selector, that is the chance of any particular individual
being chosen to breed was directly proportional to its
fitness.

• A strategy of retaining the fittest 5% of individuals was
adopted.

¥ A constant mutation rate of 1 in 2,000 was applied to
each child generated.

¥ Two children were generated for each crossover
operator.

¥ Invalid individuals were given zero f itness and were
not eligible for selection or breeding.

¥ Individuals started with a random bit string; in
particular no attempt was made to ensure that the first
random individuals were a minimum size, although if
an individual was invalid it was regenerated.

¥ At each generation a population of 250 (Balance Scale
Problem) or 500 (Regression Problem) individuals was
generated.

¥ Each run consisted of 1000 generations.

E. Bloat control

Like all GP, GE has the potential to suffer from what has
been termed ÒbloatÓ. However, bloat appears to be easier to
control in GE than in traditional GP, by putting a mild
fitness pressure on DNA size [13]. The rule used was: if
DNA size exceeds 3000 bits, then if two entities had the
same fitness then the entity with the smaller DNA is ranked
ahead. This only impacts on the decision as to the top 5% of
individuals to copy across to the next generation (it does not
impact on the probabilities of selection for crossover).
Finally DNA sizes were capped at 7000 bits; if they
exceeded this then the entity is deemed invalid.

IV. THE NEED FOR THE VARIABLE CROSSOVER

The need for a crossover which could combine the various
search strategies encapsulated by the different crossovers
available for GE became apparent when the test domains
described in this paper were analysed.

A. Numeric Regression

The numeric regression problem explored in this paper is

simple regression of the sextic polynomial .
This problem domain has been explored by Koza [15],
amongst others. For each run 50 random values of x in the
range 0 to 1.0 are generated. To compute the f itness the
absolute errors between the expected values of the function
for each of these 50 input values and the value returned by
the evolved function are summed. In our implementation,
this cumulative error is then multiplied by 200 and
subtracted from 1000. A f itness of 1000 therefore represents
maximum fitness (no cumulative error). The minimum
fitness of a valid individual is capped at 1. It is this measure
of fitness that guides the evolution process.

In accordance with KozaÕs design there is another
measure of success of the evolved function, being the
number of ÒhitsÓ achieved: for each of the xÕs chosen for
that run a hit is defined as occurring if the value returned
from the evolved function differs by less than 0.01 from the
expected value. In this case achieving 50 hits represents a
perfect solution to the numerical regression problem.

Listing 1 contains an extract of the relevant parts of the
grammar used to evolve the solutions. XVAL represents the
value of x in the evolved equation.

B. Balance Scale Problem

The balance scale problem is a data classif ication problem
that is commonly used in Machine Learning. The data is
available from the UCI Machine Learning Repository [16].
It involves a hypothetical balance scale where weights
(ranging in value from 1-5) can be placed on the left hand
and right hand side of the balance scale in one of f ive
positions (1 being the closest to the fulcrum, 5 the furthest
away). The data classif ication algorithm when given the
weight and position of the left hand weight and the weight
and position of the right hand weight needs to predict which
position the balance scale will end up in (tilted to the left,
tilted to the right or perfectly balanced). A formula which
gives a perfect result is Left Weight * Left Position,
compared to Right Weight * Right Position.

code: l i nes , Cl ass = c l ass_val ue

l i nes: l i ne, l i nes
 | l i ne

l i ne: i f (bool) t hen { l i nes } el se { l i nes }
 | i f (bool) t hen { l i nes }
 | Cl ass = c l ass_val ue

bool : (i _val ue bool _op i _val ue)
 | Not (bool)
 | bool AND bool
 | bool OR bool

bool _op: = | < | >

i _val ue: at t r i but e
 | i _val ue op i _val ue
 | (i _val ue op i _val ue)
 | - i _val ue

at t r i but e: A1 | A2 | A3 | A4

c l ass_val ue: Bal anced | Lef t | Ri ght

op: + | - | * | %

Listing 2 Ð Balance Scale Problem Grammar

The program evolved from this grammar is instantiated
with the attributes A1-A4 (which take the value of the
relevant query). A1 represents the weight on the left hand
side, A2 the position of the left hand weight, A3 the weight
on the right hand side and A4 the position of the right hand
weight. The program is then evaluated until the first
assignment to ÒClassÓ occurs, this being the value returned
by the evolved classif ier. As can be seen the expansion of
<Code> ensures that at least one assignment to Class occurs.
If the program has assigned the correct value to Class given
the values of A1-A4 then it receives a positive score (or a
hit), an erroneous classification would score zero.

1423

The dataset contains 625 examples that comprehensively
cover all possible combinations of A1-A4 for each of the
five values they can take (representing the 5 weights or 5
positions). Of the 625 examples, 288 are correctly classified
as tipping to the left, 288 as tipping to the right and 49 as
balanced. For the purposes of evaluating a run the data were
divided into two sets - a training set and a test set. The
training set contained 80% of the samples (randomly drawn
for each run from the full set). The test set was the remaining
20%. Only the training set was used to evolve the
classification programs (i.e. the fitness function returned the
number of hits based on the 80% training set) but for
reporting purposes the whole set was used (so to score 625
out of 625 the evolved classifier had to correctly classify
both the training set and the test set).

C. Initial Runs – Regression Problem
The initial runs of the regression problem, mapping the

average fitness achieved by each of the two operators over
300 runs are reproduced as chart1.

As can be seen from chart 1 (it should be noted the Y-axis
does not commence at zero to allow the differences between
the runs to be better observed) the single bit operator is
significantly better for the first 450 generations (the error
bars represent the 95% confidence level), with the LHS
operator only catching up towards the end of the runs.

A different story emerges if one looks at the number of
100% successful runs achieved (i.e. the number of runs for
which 50 “hits” were achieved).

As Chart 2 shows, the LHS Operator appears to be more
successful in achieving 100% successful solutions than the
Single-Point Codon operator despite the average fitness of
the runs being lower.

Closer analysis of the data shows that the LHS operator
appears more likely to get trapped in initial local maxima.
Chart 3 shows the first 200 runs of the Single Bit operator
and Chart 4 shows the first 200 runs of the LHS Operator.
The distribution of the runs leads to the conclusion that a
large number of LHS Operator runs are getting trapped early
on (between 400 and 600 fitness), whereas the Single Bit
Operator runs seem to get trapped at higher fitnesses.

D. Initial Runs – Balance Scale Problem
The Balance Scale Problem exhibits similar

characteristics. There is one very strong early local
maximum corresponding to the “zero rule” of always
classifying the scale as tipping to the left (or right) (e.g.
Class = Left), which scores 288 out of 625 (there being 288
instances in the data where the scale tips to a particular side).
This local maximum traps almost 50% of all the runs using
the LHS Operator. None of the runs using the Bit Operator
got trapped at this point.

Chart 1 – Average fitness over 300 runs.

Chart 4 – Fitness for each of 200 Runs of LHS Operator

Chart 3 – Fitness for each of 200 Runs of Bit Crossover

Chart 2 – Number of 100% successful solutions.

1424

1425

be seen both the Random crossover operator and the
Variable crossover operator surpass the previous crossover
operators, with the Variable crossover operator achieving
significantly better results after about 680 generations (the
error bars represent the 95% confidence level). Again note
that the Y-Axis does not start at zero to allow the differences
between the runs to be more clearly observed.

In order to test for significance in the second test, a
slightly different analysis was used. Rather than just
counting the number of successful solutions in each of the
300 runs, the runs were split up into 10 groups of 30 runs,
allowing the variances and confidence levels to be worked
out.

As can be seen from chart 7 the Random Crossover
appears to perform no better than the LHS Replacement
crossover operator (the differences are not significant)
whereas the Variable Crossover gives a significant increase
in the number of correct solutions found.

Chart 8 shows the results for the Balance Scale Problem.
The Variable Crossover and the Random Crossover far
outperform either of the two crossovers on their own,
although for this problem domain there does not appear to be
a statistical difference between the Variable and the Random
crossover.

Finally we analysed the percentage of the population that
had a preference for the Single Point Crossover. Typically
(in both problem domains), this would start off at 50% and

in the course of the first 100 or so generations settle to
approximately 20%). Of interest was whether this decay was
as a result of a switch from a global to a local search or one
of natural decay. To analyse this we started several runs of
the Balance Scale problem domain with all the individuals
having a preference for the LHS Operator. Chart 9 shows the
average percentage (averaged over 60 runs) of the
population with a preference for the Single Point Operator.
The chart shows the first 600 generations, with a granularity
of 3 generations (i.e. the information was saved every 3
generations).

As can be seen the Single Bit Operator builds up (from
zero) to account for over 30% of the population (indicating
that it must be finding fit individuals) until it drops down to
20%. This is in line with our suggestion as to the operation
of the two different crossover operators.

VII. CONCLUSIONS AND FUTURE WORK
We have shown that for the Sextic Regression Problem

and the Balance Scale problem each of the two crossover
operators detailed in this paper encounter some difficulty in
producing 100% correct solutions. Our analysis suggests
that, for these problems, each of the two crossover operators
is performing a different type of search. We posited that a
combination of the two operators would be helpful and
suggested a mechanism that would allow the population to
utilise the different searches in a manner that did not use a
population-level adaptation, but rather an individual level

Chart 6 – Regression Problem. Average fitness over all runs.

Chart 9 – Analysis of application of the different crossover
operators.

Chart 8 – No. of Solutions found in the Balance Scale Problem.

Chart 7 – No. of Solutions out of 30 runs, averaged over 10 groups.

1426

1427

