
 
 

 

  

Abstract - This paper compares the efficacy of different 
crossover operators for Grammatical Evolution across a typical 
numer ic regression problem and a typical data classification 
problem. Grammatical Evolution is an extension of Genetic 
Programming, in that it is an algor ithm for  evolving complete 
programs in an arbitrary language. Each of the two main 
crossover operators struggles (for  different reasons) to achieve 
100% correct solutions. A mechanism is proposed, allowing the 
evolutionary algor ithm to self-select the type of crossover  
util ised and this is shown to improve the rate of generating 
100% successful solutions. 

I. INTRODUCTION 
Both genetic algorithms (GA) and genetic programming 

(GP) stress the role of the crossover operator in searching the 
problem space. There are a large number of variations on the 
crossover that can be performed in GA and variation in the 
choice and frequency of the subtree crossover points in GP. 
There has been debate over which crossover operator is 
better or if, say, one type is better for small populations and 
another better with more diverged populations [2]. We 
believe the question that arises is: whether certain crossover 
types are more effective in solving different types of 
problems and whether such operators might be more 
effectively utilised at different stages of the problem solving 
attempt. If this is the case then, given that we must assume 
we have no a priori knowledge of the specific task domain, 
is there a way we can use the evolutionary algorithm to 
select the best crossover for the problem at hand? 

This paper discusses the previous work on self-adaptive 
crossover operators in GA and GP. It then recaps on how 
Grammatical Evolution (GE) extends GP to allow the use of 
radically different crossover operators rather than variations 
on location and number of sub-tree crossover points. It then 
describes the numeric regression domain and the 
classification problem used to illustrate the different results 
obtained from the two crossover operators analysed in this 
paper and delevel

 adaptive methods which 
modify the way an individual itself is treated by the system 
(e.g. its mutation rate or method of crossover); and (iii) 
component-level adaptive methods which alter one or more 
of the components of an individual.  

A. Population-Level Adaptation 
Population-level techniques utilise a higher-level analysis 

of the overall population in an attempt to alter and/or guide 
the evolutionary process. In other words an analysis of the 
population as a whole is used to adapt the crossover 
technique.  For instance [4] describes a system where the 
statistical distribution of alleles in the population is used to 
adjust the swapping probandividual

-Level Adaptation 
Several papers have analysed individual level adaptation 

in both GA and GP.  
1) Individual-level adaptation in GA 

There have been a number of papers relating to individual 
level adaptation, perhaps the most relevant to this paper 
being [6]. In [6] Spears appended to each individual a one-
bit tag that allowed the individual to choose between a two-
point and a uniform crossover in a GA system. As discussed 
by Spears the types of crossover represented by two-point 
crossover and uniform crossover are radically different in 
their effect on the GA representation. With two point 
crossover building blocks may well be maintained, whereas 
with uniform crossover building blocks will almost certainly 
be disrupted unless the populations are highly converged. 
Spears noted a difference between the two-point and the 
uniform crossover operators not so much between the two 
problems examined, but rather on the size of the populations 
and the level of redundant bits utilised in different runs. This 
is primarily down to the fact that for half of the problems 
90% of the bits were redundant, only the first 10% having 
any impact on the solution. With traditional two-point 
crossover in such a system most crossovers (90% of all 
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crossovers) would have no impact. For this reason we 
believe that the impact of the self-adaptation he implemented 
was somewhat muted. In addition when he removed the self-
adaptation relating to the different crossover points and 
instead applied them randomly, largely the same benefits 
were observed. Spears paper is geared towards GA. 
Although the questions explored by Spears are similar to 
those discussed in this paper, the representation of the 
problems chosen by him were such that, arguably, the two 
point operator’s effectiveness was highly constrained by the 
unlikelihood of a crossover occurring in the active part of the 
genome.  

2) Individual-level adaptation in GP 
With respect to previous individual-level adaptation in 

GP, Angeline [7] introduces a modification to the standard 
crossover in GP that allows two types of self-adaptation. The 
first, which he terms Selective Self-Adaptive Crossover 
(SSAC) is a method that utilises individual-level adaptation. 
SSAC involves keeping associated with each parse tree a 
parse tree of probabilities; these probabilities impact the 
choice of the crossover point. The second, Self-Adaptive 
Multi-Crossover (SAMC), keeps a similar mirror parse tree 
of probabilities, but each probability equates to the chance of 
a crossover occurring at that point (i.e. rather than 
influencing the choice of where the one crossover point 
occurs as in SSAC, with SAMC multiple crossover points 
can occur, each point occurring with a probability 
determined by the corresponding point in the mirror 
probability parse tree). Unlike SSAC, SAMC is a component 
level adaptation (as explained in section II.C). 

Whilst the results obtained by Angeline are promising 
they differ from the study in this paper as they are a means 
of adapting the way the crossover works rather than 
choosing between different crossover operators. For 
instance, in all the cases explored by Angeline, the different 
crossovers act to swap one or more complete subtrees – there 
is no equivalent of the uniform crossover or the “ripple 
crossover” of GE [14]. Whilst the self-adaptation is designed 
to make the appropriate type of crossover more efficient, and 
in the test domains analysed – with certain caveats – this 
appears to be the case, our interest is more in using the 
evolutionary algorithm to choose between different 
crossover types (which appear to traverse the problem 
domains in different ways) in an attempt to make the 
algorithm more robust for problem domains where one type 
of crossover operator on its own may have problems. 

C. Component Level Adaptation. 
Arguably, the SAMC operator introduced by Angeline 

(see II.B.2) is a component level operator in GP, since it 
impacts on the probabilities of any one component (or node 
of the expression tree) being swapped during crossover. 
Whilst this operator certainly can have a radical impact on 
the crossover (allowing multiple nodes to be swapped in any 
one operation) it still utilises the same principle of crossover, 
namely the swapping over of subtrees. 

Otherwise component level adaptation would appear to 

have been most extensively studied in EP and ES and is of 
limited relevance to the aims of the paper. The reader is 
referred to [3] for a fuller discussion of this type of 
adaptation. 

III. GRAMMATICAL EVOLUTION 

A. Introduction 
Grammatical Evolution (GE) is a form of genetic 

programming which utilises the evolutionary algorithm to 
evolve code written in any language, provided the grammar 
for the language can be expressed in a Backus Naur Form 
(BNF) style of notation [8].  Traditional genetic 
programming, as exemplified by Koza [9] has the 
requirement of “Closure”. Closure, as defined by Koza, is 
used to indicate that a particular function set should be well 
defined for any combination of arguments. Previous work by 
Montana [10] suggests that superior results can be achieved 
if the limitation of “closure” required in traditional genetic 
programming can be eliminated, for example through typing.  
Whigham [11] demonstrates the use of context free 
grammars to define the structure of the programming 
language and thereby overcome the requirement of closure 
(the typing being a natural consequence of evolving 
programs in accordance with the grammar). GE utilises the 
advantages of grammatical programming, but, unlike the 
method proposed by Whigham, separates the grammar from 
the underlying representation (or as this is commonly 
referred to; the genotype from the phenotype).  

It has been argued that the separation of genotype from 
phenotype allows unconstrained genotypes (and 
unconstrained operations on genotypes) to map to 
syntactically correct phenotypes. Keller [12] presents 
empirical results demonstrating the benefit of this type of 
mapping. One of the interesting aspects of having such a 
simple underlying genotype as GE (a bit string) is that it is 
possible to design a number of operators that act on this 
simple bit string. For instance crossovers can be designed 
which mirror uniform crossover, single bit crossover and 
crossovers which swap complete expansions in the 
underlying grammar, each of which represent (after the 
genotype to phenotype mapping has been performed) 
radically different methods of searching the phenotype 
space. It is likely that different crossovers have advantages 
in different fitness landscapes. The question that this paper 
explores is whether there is a way to allow the choice of 
which crossover to apply to come under the control of the 
genetic algorithm itself. 

The way that GE maps the genotype to the phenotype is 
discussed in the next subsection. The different types of 
crossovers that are used in this paper are discussed in 
subsection III.C. 

B. Grammatical Evolution – the mapping 
Rather than representing programs as parse trees GE 

utilises a linear genome representation to drive the derivation 
of the encoded program from the rules of an arbitrary BNF 



 
 

 

grammar. Typically the genome (being a variable length bit 
string) is split up into 8 bit codons and these codons are used 
sequentially to drive the choices of which branch of the 
grammar to follow. The maximum value of the codon is 
typically many times larger than the number of possible 
branches for any particular non-terminal in the grammar and 
a mod operator is utilised to constrain it to the required 
number. 

Using, by way of example, the numerical regression 
grammar contained in listing 1; the following illustrates the 
translation process. If an individual had the following initial 
DNA and codon pattern 

DNA: 00100001 00010100 00100000 00000001 00010000… 
Codons:     33           20              32             1              16… 

it would be translated as follows: No codon would be used 
for the first expansion, since there is only one choice: 
<code> (being the start of the parse) is expanded to 
<i_value>. The initial codon of the genome would be used to 
determine which of the five possible expansions to apply to 
<i_value>. The value of 33 would be MOD’d with five 
(since there are five choices) to give a value of 3. The fourth 
choice (<i_value><op><i_value>) would then be chosen. 
The expression now is “<i_value><op><i_value>”. The first 
non-terminal <i_value> is expanded by using the next codon 
(20). <i_value> has five choices, so 20 would be MOD’d 
with 5, to give zero and XVAL would be chosen. The 
expression is now “XVAL <op> <i_value>”. The next non-
terminal (<op>) is expanded using the codon 32. 32 Mod 4 = 
0, so “+” is chosen, leaving us with “XVAL + <i_value>”. 
<i_value> is then expanded using the next codon (1), to give 
us <number>. The expression is now “XVAL + <number>”. 
The next three codons are used to decode the three digits in 
number, giving us, say, “XVAL + 0.621” There being no 
further non-terminals in the expression the expansion is 
complete. Any remaining codons are not used. 

If the expression can be fully expanded by the available 
codons (i.e. the expansion reaches a stage where there are no 
non-terminals) the individual is valid; if the codons run out 
before the expression is fully expanded the individual is 
invalid and assigned a fitness of zero, effectively removing it 
from the population. 

code: i_value 

i_value: XVAL 
  | number 
  | i_value op i_value 
  | ( i_value op i_value ) 
  | - i_value 

number: 0. digit digit digit 

digit: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

op:   + | - | * | % 

Listing 1 – Extract of Numerical Regression Grammar  

C. Crossover Operators 
In previous work [13] we have explored a number of 

different crossovers which can be utilised in GE. Here we 
briefly describe the two crossover types that are utilised in 

this paper.  
• Single Point Bit Operator: The standard GE crossover 

[8] is a simple one-point operator. Here random points 
are chosen in the genotype (the bit string) and the two 
parents have their “tails” swapped. Our 
implementation of the operator constrains the choice 
of crossover point to occur during the coding part of 
the genome (i.e. in the part of the genome which is 
used to “decode” the grammar). As illustrated in 
Diagram 1 the values of the codons in the tails being 
swapped may change (unless the crossover points 
happen to fall on codon boundaries). In addition the 
codons in the new tails may be used to interpret a 
different part of the grammar than the part they 
interpreted in their parent. Given this, the single point 
bit crossover has been criticised on the grounds that it 
is seemingly destructive of the information contained 
in the second contributing parent. However, despite 
the apparent destructive effect of the crossover, its 
efficacy as a search operator has been confirmed in 
[14]. 

• LHS Operator: The LHS crossover acts as a two-point 
crossover whereby the expansion of a rule of the 
grammar (or the Left Hand Side of a grammatical rule) 
is replaced by an expansion of the same rule found in 
the other parent. The mechanism by which this is 
achieved is fully described in [13]. The LHS crossover 
is similar to the traditional GP sub-tree crossover, save 
that it operates on the parse tree rather than the 
complete phenotype. 

Of the two crossover operators used in this paper the 
Single Point Bit Operator is arguably the most destructive, as 
it preserves neither the codon values of the tail nor their 
context. The LHS Operator is the least destructive of the 
operators since codon sequences are swapped whilst 
preserving their values and the part of the grammar they are 
being used to interpret.  

An important point to note for the purposes of this paper 
is that these two crossover operators represent quite distinct 
methods of searching the phenotype space. 

D. The GE environment 
The following constant GE strategy was utilised: 
• Selection of individuals was based on a probability 

selector, that is the chance of any particular individual 
being chosen to breed was directly proportional to its 
fitness.  

• A strategy of retaining the fittest 5% of individuals was 
adopted. 



 
 

 

¥ A constant mutation rate of 1 in 2,000 was applied to 
each child generated. 

¥ Two children were generated for each crossover 
operator. 

¥ Invalid individuals were given zero f itness and were 
not eligible for selection or breeding. 

¥ Individuals started with a random bit string; in 
particular no attempt was made to ensure that the first 
random individuals were a minimum size, although if  
an individual was invalid it was regenerated. 

¥ At each generation a population of 250 (Balance Scale 
Problem) or 500 (Regression Problem) individuals was 
generated. 

¥ Each run consisted of 1000 generations. 

E. Bloat control 

Like all GP, GE has the potential to suffer from what has 
been termed ÒbloatÓ. However, bloat appears to be easier to 
control in GE than in traditional GP, by putting a mild 
fitness pressure on DNA size [13]. The rule used was: if  
DNA size exceeds 3000 bits, then if two entities had the 
same fitness then the entity with the smaller DNA is ranked 
ahead. This only impacts on the decision as to the top 5% of 
individuals to copy across to the next generation (it does not 
impact on the probabilities of selection for crossover). 
Finally DNA sizes were capped at 7000 bits; if they 
exceeded this then the entity is deemed invalid. 

IV. THE NEED FOR THE VARIABLE CROSSOVER 

The need for a crossover which could combine the various 
search strategies encapsulated by the different crossovers 
available for GE became apparent when the test domains 
described in this paper were analysed.  

A. Numeric Regression 

The numeric regression problem explored in this paper is 

simple regression of the sextic polynomial . 
This problem domain has been explored by Koza [15], 
amongst others. For each run 50 random values of x in the 
range 0 to 1.0 are generated. To compute the f itness the 
absolute errors between the expected values of the function 
for each of these 50 input values and the value returned by 
the evolved function are summed. In our implementation, 
this cumulative error is then multiplied by 200 and 
subtracted from 1000. A f itness of 1000 therefore represents 
maximum fitness (no cumulative error). The minimum 
fitness of a valid individual is capped at 1. It is this measure 
of fitness that guides the evolution process. 

In accordance with KozaÕs design there is another 
measure of success of the evolved function, being the 
number of ÒhitsÓ achieved: for each of the xÕs chosen for 
that run a hit is defined as occurring if the value returned 
from the evolved function differs by less than 0.01 from the 
expected value. In this case achieving 50 hits represents a 
perfect solution to the numerical regression problem.  

Listing 1 contains an extract of the relevant parts of the 
grammar used to evolve the solutions. XVAL represents the 
value of x in the evolved equation. 

B. Balance Scale Problem 

The balance scale problem is a data classif ication problem 
that is commonly used in Machine Learning. The data is 
available from the UCI Machine Learning Repository [16]. 
It involves a hypothetical balance scale where weights 
(ranging in value from 1-5) can be placed on the left hand 
and right hand side of the balance scale in one of f ive 
positions (1 being the closest to the fulcrum, 5 the furthest 
away). The data classif ication algorithm when given the 
weight and position of the left hand weight and the weight 
and position of the right hand weight needs to predict which 
position the balance scale will end up in (tilted to the left, 
tilted to the right or perfectly balanced). A formula which 
gives a perfect result is Left Weight *  Left Position, 
compared to Right Weight *  Right Position. 

code:  l i nes ,  Cl ass = c l ass_val ue 
 
l i nes:  l i ne,  l i nes 
 |  l i ne  
 
l i ne:  i f  ( bool )  t hen { l i nes }  el se { l i nes }  
 |  i f  ( bool )  t hen { l i nes }   
 |  Cl ass = c l ass_val ue 
 
bool :  (  i _val ue bool _op  i _val ue )  
 |  Not  (  bool  )  
 |  bool  AND bool  
 |  bool  OR bool  
 
bool _op:  = |  < |  > 
 
i _val ue:  at t r i but e 
  |  i _val ue op i _val ue 
  |  (  i _val ue op i _val ue )  
  |  -  i _val ue 
   
 
at t r i but e:  A1 |  A2 |  A3 |  A4  
 
c l ass_val ue:  Bal anced |  Lef t  |  Ri ght  
 
op:  + |  -  |  *  |  % 
 

Listing 2 Ð Balance Scale Problem Grammar 

The program evolved from this grammar is instantiated 
with the attributes A1-A4 (which take the value of the 
relevant query). A1 represents the weight on the left hand 
side, A2 the position of the left hand weight, A3 the weight 
on the right hand side and A4 the position of the right hand 
weight. The program is then evaluated until the first 
assignment to ÒClassÓ occurs, this being the value returned 
by the evolved classif ier. As can be seen the expansion of 
<Code> ensures that at least one assignment to Class occurs. 
If the program has assigned the correct value to Class given 
the values of A1-A4 then it receives a positive score (or a 
hit), an erroneous classification would score zero. 
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The dataset contains 625 examples that comprehensively 
cover all possible combinations of A1-A4 for each of the 
five values they can take (representing the 5 weights or 5 
positions).  Of the 625 examples, 288 are correctly classified 
as tipping to the left, 288 as tipping to the right and 49 as 
balanced. For the purposes of evaluating a run the data were 
divided into two sets - a training set and a test set.  The 
training set contained 80% of the samples (randomly drawn 
for each run from the full set). The test set was the remaining 
20%. Only the training set was used to evolve the 
classification programs (i.e. the fitness function returned the 
number of hits based on the 80% training set) but for 
reporting purposes the whole set was used (so to score 625 
out of 625 the evolved classifier had to correctly classify 
both the training set and the test set). 

C. Initial Runs – Regression Problem 
The initial runs of the regression problem, mapping the 

average fitness achieved by each of the two operators over 
300 runs are reproduced as chart1.  

As can be seen from chart 1 (it should be noted the Y-axis 
does not commence at zero to allow the differences between 
the runs to be better observed) the single bit operator is 
significantly better for the first 450 generations (the error 
bars represent the 95% confidence level), with the LHS 
operator only catching up towards the end of the runs. 

A different story emerges if one looks at the number of 
100% successful runs achieved (i.e. the number of runs for 
which 50 “hits” were achieved). 

As Chart 2 shows, the LHS Operator appears to be more 
successful in achieving 100% successful solutions than the 
Single-Point Codon operator despite the average fitness of 
the runs being lower.  

Closer analysis of the data shows that the LHS operator 
appears more likely to get trapped in initial local maxima. 
Chart 3 shows the first 200 runs of the Single Bit operator 
and Chart 4 shows the first 200 runs of the LHS Operator. 
The distribution of the runs leads to the conclusion that a 
large number of LHS Operator runs are getting trapped early 
on (between 400 and 600 fitness), whereas the Single Bit 
Operator runs seem to get trapped at higher fitnesses. 

D. Initial Runs – Balance Scale Problem 
The Balance Scale Problem exhibits similar 

characteristics. There is one very strong early local 
maximum corresponding to the “zero rule” of always 
classifying the scale as tipping to the left (or right) (e.g. 
Class = Left), which scores 288 out of 625 (there being 288 
instances in the data where the scale tips to a particular side). 
This local maximum traps almost 50% of all the runs using 
the LHS Operator. None of the runs using the Bit Operator 
got trapped at this point.  

Chart 1 – Average fitness over 300 runs. 

Chart 4 – Fitness for each of 200 Runs of LHS Operator 

Chart 3 – Fitness for each of 200 Runs of Bit Crossover 

Chart 2 – Number of 100% successful solutions. 
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be seen both the Random crossover operator and the 
Variable crossover operator surpass the previous crossover 
operators, with the Variable crossover operator achieving 
significantly better results after about 680 generations (the 
error bars represent the 95% confidence level). Again note 
that the Y-Axis does not start at zero to allow the differences 
between the runs to be more clearly observed. 

In order to test for significance in the second test, a 
slightly different analysis was used. Rather than just 
counting the number of successful solutions in each of the 
300 runs, the runs were split up into 10 groups of 30 runs, 
allowing the variances and confidence levels to be worked 
out.  

As can be seen from chart 7 the Random Crossover 
appears to perform no better than the LHS Replacement 
crossover operator (the differences are not significant) 
whereas the Variable Crossover gives a significant increase 
in the number of correct solutions found. 

Chart 8 shows the results for the Balance Scale Problem. 
The Variable Crossover and the Random Crossover far 
outperform either of the two crossovers on their own, 
although for this problem domain there does not appear to be 
a statistical difference between the Variable and the Random 
crossover.  

Finally we analysed the percentage of the population that 
had a preference for the Single Point Crossover. Typically 
(in both problem domains), this would start off at 50% and 

in the course of the first 100 or so generations settle to 
approximately 20%). Of interest was whether this decay was 
as a result of a switch from a global to a local search or one 
of natural decay. To analyse this we started several runs of 
the Balance Scale problem domain with all the individuals 
having a preference for the LHS Operator. Chart 9 shows the 
average percentage (averaged over 60 runs) of the 
population with a preference for the Single Point Operator. 
The chart shows the first 600 generations, with a granularity 
of 3 generations (i.e. the information was saved every 3 
generations).   

As can be seen the Single Bit Operator builds up (from 
zero) to account for over 30% of the population (indicating 
that it must be finding fit individuals) until it drops down to 
20%. This is in line with our suggestion as to the operation 
of the two different crossover operators. 

VII. CONCLUSIONS AND FUTURE WORK 
We have shown that for the Sextic Regression Problem 

and the Balance Scale problem each of the two crossover 
operators detailed in this paper encounter some difficulty in 
producing 100% correct solutions. Our analysis suggests 
that, for these problems, each of the two crossover operators 
is performing a different type of search. We posited that a 
combination of the two operators would be helpful and 
suggested a mechanism that would allow the population to 
utilise the different searches in a manner that did not use a 
population-level adaptation, but rather an individual level 

Chart 6 – Regression Problem. Average fitness over all runs. 

Chart 9 – Analysis of application of the different crossover 
operators. 

Chart 8 – No. of Solutions found in the Balance Scale Problem. 

Chart 7 – No. of Solutions out of 30 runs, averaged over 10 groups. 
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