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Abstract 
This paper presents a method for extracting distinctive textural features from images taken from natural scenes. 
The aim is to use natural landmarks for navigation in an unexplored environment. Natural features are all 
different and complex in shape. To be able to use them for navigation, informative representation of these 
features and a careful selection process is required. The present method is termed as ‘Distinctive Texture 
Analysis’. It has three parts. Firstly, a method of selecting Interest Points from the filtered images is presented. 
Secondly, Texture Analysis of the local properties of Interest Points are applied and stored as descriptors. 
Thirdly, to reduce the number of landmarks selected for storage and comparison purposes, Distinctness Analysis 
is applied. Current results have shown that the most distinctive features as concurred by viewing the simple 
images are able to be selected and correctly matched. Results provided for the complex underwater images 
illustrated the difficulty and limitation. However, when this method is applied with multiple numbers of 
landmarks such that correlation of landmark positions is considered, certainty for SLAM can increase. Future 
works can include consideration of such correlation. 
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1 Introduction 
Navigating in an unexplored environment such as 
underwater is very different to a controlled indoor 
environment. Traditional SLAM (Simultaneous 
Localization and Mapping) algorithms use point-
based features and usually rely on artificial landmarks, 
which do not exist in an unexplored environment. If it 
is proposed that natural landmarks can be used instead, 
any new method must be able to handle the 
complicated structures of such landmarks that can 
come in many shapes and textures without prior 
knowledge of their characteristics. 

To compare the chosen extracted landmarks, a 
representation that is invariant to geometric 
transformation is needed. Hence, a careful choice of 
descriptors of texture properties is also necessary. 
Moreover, a method must be designed to extract only 
the distinctive objects from background to use as 
landmarks for comparison to save computational time 
and storage space. 

This paper proposes a method that extracts and stores 
only distinctive points of an image for comparison. 
This approach contains three stages, extracting 
interest points from original images, comparing the 
local properties of these interest points by texture 
analysis and lastly selecting the most distinctive 
points to store and compare. 

1.1 Related research 
The traditional manner of providing feature data for 
SLAM has been characterised by point-based feature 
representation. Many attempts have been made with 
this approach [1] [2] [3] using Kalman filtering [4]. 
Every landmark in point-based feature representation 
is located specifically in the environment for easy 
recognition. In an open unstructured environment, it is 
hard to find such easily identifiable landmarks. 
Therefore, using these methods in an open 
environment is only possible if artificial landmarks 
are introduced. This requires putting beacons or 
reflectors in the environment prior to robot 
exploration. However, this negates the original aim i.e. 
navigating in an open and unexplored environment. 

Methods that recognise landmarks by images 
commonly use Principle Component Analysis (PCA) 
[5]. PCA represents objects weighted by the most 
common features of exemplars and uses these 
principle components for matching. This algorithm 
effectively reduces the problem to approximately 20 
to 30 dimensions. The major limitation is that it 
requires having pre-knowledge of possible landmarks.  

More recent methods for reducing dimensionality 
include Isomap and LLE [6] [7] [8] which reduce 
from a global and a local perspective correspondingly 
while preserving neighbourhood relationships. Again, 
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these methods require pre-knowledge of possible 
landmarks. 

Another method of landmark recognition called Scale 
Invariant Feature Transformation (SIFT) [9] can be 
characterised by analysing the local properties of 
interest points of the images, noting they are usually 
invariant under certain conditions, namely scale, 
rotation, shift, illumination and affine transformation. 
SIFT is an efficient method for representing 
landmarks in this manner based on local gradients of 
extrema using Difference Of Gaussian (DOG) filters.  

In addition to SIFT, some Harris Matrix [10] based 
approaches claim to be invariant under affine 
transformation [11] [12]. Other methods including 
phase congruency [13] [14], wide baseline stereo 
matching [15], intensity transformation [16] [17] [18] 
and steerable filters [19] are also designed to provide 
invariant descriptors. Some comparison of these 
techniques have been reported [20] [21] [22]. 

The main motivation for the methods mentioned 
above has come from interests in vision analysis for 
object recognition not necessarily for navigation and 
guidance via new feature extraction. For SLAM 
applications, real time computation is required. 
Therefore it is important to select the minimum 
number of landmarks which are necessary and distinct 
for storage and comparison. This paper reports on a 
method that has the potential to achieve this objective. 

In Section 2, a new method for finding distinctive 
textural features from images is described. Section 3 
presents some test results showing how well the 
technique works on both a simple and complex 
natural environment. Section 4 gives conclusions and 
presents possible future work. 

2 Distinctive Feature Analysis 
As already mentioned, the method of feature 
extraction that is reported here consists of three parts, 
extracting interest points, analysis of texture via 
comparison of segmentation of Discrete Fourier 
Transforms (DFT) and selection of distinctive 
segments from the descriptors for comparison via 
probability analysis. 

2.1 Interest points 
The first step is to extract areas of an image as 
landmarks. These areas must ideally be invariant to 
rotation, shift, scale, illumination and affine 
transformation such that when the image is taken 
from the same scene again, the same features would 
be evident. In [9] it is proposed that the peaks of the 
DOG image are invariant to scale, shift, rotation and 
illumination to some degree. 

The DOG image is computed by convolving the 
original image I(x,y) with a Gaussian function of 

standard derivation σ, to obtain a blurred version of 
original image B(x,y,σ). 

),(),,(),,( yxIyxGyxB ∗= σσ  
where * is the convolution operator in x and y plane. 
The Gaussian function: 
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is applied to B(x,y,σ) sequentially obtaining B(x,y,kσ) 
where kσ represents the number of convolutions 
applied to the original image. 

The DOG image is then defined to be the difference 
of these two blurred images. 
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Note that the variable σ depends on the complexity of 
image. It is possible to construct a pyramid of DOG 
images as described in [9]. However, here only one 
level is used to keep the computational burden down. 

In the technique proposed here, bilinear interpolation 
is applied before the first convolution takes place, 
significantly reducing the size of the image and 
computational time. In the images used in this paper, 
we are working mainly with lower frequency bands 
that are designed to capture fewer, but larger objects 
within images. 

 
Figure 1: Expanding extrema in a DOG image to 

areas for use as landmarks. 

From the DOG image, extrema can be found directly 
by comparing each pixel with its neighbour in a preset 
radius for each image. After locating extrema, a local 
limited neighbourhood (area) is expanded around the 
point of interest for analysis. Even though square 
areas are produced to enable DFT, as will be 
discussed further in Section 2.2, a Hanning window is 
applied to all areas making them approximately 
circular and hence invariant to rotation. These areas, 
having special properties centred at extrema of DOG 
images are then used as landmarks. 
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Since DOG properties are invariant to most 
geometrical transformations, the same points 
expanded into areas should be able to repeatedly 
selected in different images. Chosen areas can be seen 
in Figure 1. 

2.2 Texture analysis 
Texture properties are used to describe the areas 
chosen as detailed in 2.1. Measuring texture is closely 
related to measuring a frequency distribution which 
can be obtained from the periodogram [23]. The 
periodogram is calculated from the squared terms of 
the individual values from the Discrete Fourier 
Transform (DFT) as shown below: 
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where W is the prototype image window, centred 
approximately about the origin. q(k) is the Hanning 
window function defined as: 
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A periodogram represents a frequency distribution as 
a matrix of values. Each value represents a particular 
amplitude of frequency. Since for natural images, low 
frequencies dominate, the distribution in the 
periodogram reduces the statistical redundancy and 
provides a lower dimensional representation. The 
Hanning window is used to smoothly correct the 
boundary effect of the DFT. 

An analysis of the properties of periodogram is 
conducted as shown in Figure 2, the concentric annuli 
and angular segments are used to extract the 
components of the periodogram. After summing the 
magnitudes within each segment, ratios between 
segments can be obtained and are meaningful in terms 
of the spatial frequency distributions obtained in each 
image and as a function of orientation. 

The concentric circles measure frequency distribution 
invariant to rotation. The angular segments on the 
other hand, measure angular frequency distribution. 
The angular segments can also be made invariant to 
rotation if the segments are compared relative to the 
highest magnitude segment not the absolute 
orientation. 

When using this method, firstly there is a need to 
exclude the lower frequencies in the angular segments 
because too few samples are available to subdivide 
into angular segments. Secondly, only half of the 
plane needs to be analysed because the DFT is always 
symmetrical. 

The sums of samples in the concentric annuli and 
angular segments can be further analysed as 
descriptors of the image. For concentric annuli, these 
descriptors can be normalised or retain their absolute 
magnitude. The number of descriptors used depends 
on pixel density of the image. For angular segments, 
descriptors can also be normalised or absolute, but 
shifted relatively to the maximum value obtained. 

 

 
Figure 2: Periodogram features used; top - concentric 

annuli; lower - angular segments. 

 
The descriptors from the DFT now serve as signatures 
for further comparison in parameter space by finding 
Euclidean norms. Hence similarity of features, 
landmarks and textures is postulated to increase as the 
Euclidean distance in parametric space decreases. 

2.3 Distinctness analysis 
Each image can now be represented by descriptors as 
explained in Section 2.2 derived from the DFT. In 
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parametric space, further selection of distinctive 
segments can be made. The general philosophy of 
distinctive selection is to preserve a set of parameters 
that appear infrequently whilst deleting those that 
appear everywhere. Using all the values of detected 
segments as samples and considering all descriptors 
as random variables, the probability distribution for 
each descriptor can then be calculated, assuming a 
Gaussian profile, from: 
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A distinctness selection is made on the assumption 
that a result with the lowest probability represents the 
most distinctive feature. 

3 Results 

3.1 Simple images test 
The procedure given in Section 2 was applied to two 
different sets of images. The first set contained simple 
features of easily recognised objects whilst the second 
set contained complex underwater features. 

 
Figure 3: Feature areas selected as extrema in a DOG 

analysis. 

In the first test, the areas selected by DOG extrema 
analysis as described in Section 2.1 contained features 
as shown in Figure 3. After applying the distinctness 
analysis, the number of distinct areas reduced 
significantly as well as filtering out most of those 
emanating from the carpet background (see Figure 4: 
Top). 
 

 
Figure 4: Distinctive feature areas selected after 
distinctness analysis has been applied to images: 

Top – selection from image (1) in Figure 3:  
Bottom – selection from a similar image (2) at the 

same stage of being processed. 

 
Figure 5: Correlation of features using inverse 

Euclidian distances for two similar images. 

In Figure 4, the analysis has been taken one stage 
further, selecting for distinctness using Euclidian 
distances. The two images captured the same scene 
with a small translation and rotation. The correlation 
between numbered features in each image is 
compared using a contour plot in Figure 5. 

Inverse 
distance

Landmark 
no. for image 1

Landmark  no. 
for image 2 
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3.2 Complex underwater images test 
In the second test, images from a realistic robotic 
environment were used where a robot was placed in a 
coral reef. In this test, one of the feature areas is 
selected from the first image of the set as a reference 
for comparison (see landmark 16 - an area within the 
big coral in the lower right corner in Figure 6).  

Interest is centred on whether the procedure can select 
other feature areas that are similar to the reference 
whilst rejecting those that are irrelevant. The images 
shown in Figure 7 labelled 2 to 10 have been 
processed for comparison with the feature areas from 
the first image. 

 
Figure 6: Reference image. (Courtesy of ACFR, 

University of Sydney, Australia) 

 
Figure 7: A series of images analysed for comparison 
with a reference image analysis. (Courtesy of ACFR, 

University of Sydney, Australia) 

 
After applying the procedure of Section 2, a contour 
plot of the correlation of inverse Euclidian distances 
is shown in Figure 8. Similarity between each feature 
area and the reference area in Figure 6 has been 
measured. Peaks in the contour plot indicate feature 
areas that are similar, whereas a flat surface indicates 
minimal correlation. The results show that image 2 in 

Figure 7 has generated many high peaks compared to 
the other images. Image 2 is the only image that 
captures the same scene but from a different angle to 
that of the reference image. Therefore, in this test, the 
procedure has correctly retained information relevant 
for identifying features that are persistent as the scene 
changes and, at the same time, filtering out irrelevant 
candidate feature areas. 

Notice also that in Figure 8 a significant peak can be 
observed in image 4, landmark 29 from Figure 7. A 
check with the test images reveals this landmark has 
very similar texture properties with the reference. 
Although the texture is similar, the location of image 
4 is different to that of image 1. Hence, this method 
cannot provide a perfect matching capability. Instead 
it will match landmarks in real-time but with a few 
false positive candidates. 

This method, combined with correlation of different 
landmarks within the same image, could significantly 
increase certainty for SLAM in unstructured 
environments. 

 

 
Figure 8: Correlation of features using inverse 

Euclidian distances between each area of the set of 
images with the reference. 

4 Conclusions and future work 
A three-step approach of utilising natural landmarks 
for navigation is presented in this paper. Results have 
shown that this method is capable of filtering out 
irrelevant landmarks while identifying those with 
similar visual properties. 

Future work will investigate how this method can be 
incorporated within the SLAM framework to achieve 
autonomous navigation in unstructured environments. 
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