Towards an Efficient Optimal Trajectory Planner for
Multiple Mobile Robots

Jason Thomas, Alan Blair, Nick Barnes
Department of Computer Science and Software Engineering
The University of Melbourne, Victoria, 3010, Australia
Email: {jrth, blair, nmb}@cs.mu.0Z.AU

Abstract— In this paper, we present a real-time algorithm
that plans mostly optimal trajectories for multiple mobile robots
in a dynamic environment. This approach combines the use
of a Delaunay triangulation to discretise the environment, a
novel efficient use of the A* search method, and a novel cubic
spline representation for a robot trajectory that meets the
kinematic and dynamic constraints of the robot. We show that for
complex environments the shortest-distance path is not always
the shortest-time path due to these constraints. The algorithm has
been implemented on real robots, and we present experimental
results in cluttered environments.

I. INTRODUCTION

Path planning is fundamental to mobile robots and has been
studied extensively over many years. Path planning is the
process of calculating a path for a mobile robot to follow
so that it can move from one pose (position and orientation)
to another, while avoiding collisions with obstacles. Trajectory
planning is the extension of path planning to consider velocity.
A wide variety of methods have been developed for path
planning and can be broadly classified as either local planners
or global planners. Local planners derive a path based on local
sensors on the robot and do not make use of a map of their
environment. As such, local planners are reactive, based on
immediate sensor data. Conversely, global planners utilise a
map of the world, either as a priori knowledge, sensed by
some global sensor (e.g. a camera over the environment), or
built up through exploration. Beyond finding a path, some
global planners attempt to find the optimal or near-optimal
trajectory for a mobile robot and in some cases multiple mobile
robots. This however, has been limited to static environments
only. We see a need for an algorithm to find optimal trajec-
tories for multiple robots, in a dynamic environment, in real-
time. We have developed an algorithm that will find optimal
trajectories for multiple robots in most cases, and present real
robot experimental results.

A. Local Planners

There are a number of algorithms for planning paths from
local sensor data. We discuss three popular methods: potential
fields; the vector field histogram; and the dynamic window
approach.

Potential fields[1][2], sometimes referred to as vector force
fields (VFF) or velocity fields, are based on the concept of
electric or magnetic fields. Various objects in the environment
can impart an attractive or repulsive force on the robot. This

method is computationally fast, however it does suffer from
certain limitations. Often attractive and repulsive forces can
negate each other resulting in the robot stopping, or moving
slowly. Potential fields, as with all purely local planners,
cannot handle the box-canyon problem (a local minimum).

The Vector Field Histogram (VFH) algorithm [3] aims at
handling the vector negation problem in potential fields by
using a histogram. The VFH first creates a one-dimensional
polar histogram then selects the most suitable sector for the
steering direction. This allows the robot to maintain a higher
average velocity.

The Dynamic Window Approach [4] goes further to search
through the space of possible instantaneous velocities of the
robot, taking into account the dynamics of the robot. This is
achieved by reducing its search space to only circular trajecto-
ries which can be uniquely determined by pairs of translational
and rotational velocities, a two-dimensional search space. Only
velocities that are safe and will not collide with obstacles
given the known dynamic constraints are allowed and only
obstacles within a small window of space, reachable within
a short amount of time, are considered. However, due to the
lack of knowledge of the whole environment, all local planners
are at best able to produce a globally optimal path in trivial
environments.

B. Global Planners

Knowledge of the entire environment allows global planners
to search for a complete path from the starting pose to the
goal pose. This knowledge must be represented in a form that
can be searched. This generally translates to discretising the
world in some way. The typical approaches for this can be
categorised into cell decomposition, or graph based methods.
We examine the use of occupancy grids which are a form of
cell decomposition, and Voronoi and visibility graphs, which
are graphical methods.

Methods using Occupancy Grids [5] represent the envi-
ronment as a grid. The resolution of the grid can vary
depending on the fidelity of the available information, either
a priori knowledge or sensed. Grid coordinates are classified
as occupied by an obstacle, empty, or unknown. This grid
can then be searched for available paths generally either using
an A* search [5] or the distance transform [6]. For a high
resolution grid the search space can become large leading to
high computational cost.

Graph based methods try to overcome this scaling problem
by representing the knowledge as a graph. The graph is
dependent on the complexity of the environment (number of
obstacles) rather than physical size. Graph based path planning
is often referred to as road-map [7] planning since the arcs on
the graph can be considered roads the robot can traverse with
the vertices as intersections. This graph must then be searched
to find a path.

Generalised Voronoi Diagrams (GVD) [8] are often used for
this purpose. The GVD is defined as the locus of points which
are equidistant from two or more obstacle boundaries includ-
ing the workspace boundary [9]. A GVD can be generated in
O(NlogN)[8]. GVDs result in a path that is as far away from
all obstacles as possible. This is a good representation when
the space between obstacles is slightly larger than the robot
itself, however it is conservative if the relative size of the robot
to the space between obstacles is small, since this results in
a path that is sub-optimal due to the equidistant constraint on
the graph.

\Voronoi diagrams have also been used for structure extrac-
tion [10] to generate topological maps from other maps. A
\oronoi diagram can be efficiently created from its dual, the
Delaunay Triangulation, which is sometimes easier to extract
directly than the Voronoi graph.

Additionally, visibility graphs are often used in robot motion
planing [7]. Each obstacle is reduced to a vertex list. For
simple objects this can often be one vertex representing a
point source, however walls and polygons can be represented
as a connected vertex list. A graph is produced such that
each arc on the graph connects vertices that are visible to
each other. When used for path planning the starting point
and goal point are included in the graph, and the planner
simply searches through the graph from the start vertex to
the goal vertex. This can easily be implemented with an A*
search using Euclidean distance as the heuristic. Algorithms
for constructing and searching this graph exist with running
time O(N?). While a Voronoi graph will force a path far
away from obstacles, a visibility graph has the opposite effect
of taking the path close to obstacles. This increases the risk of
collisions with obstacles and can result in a sub-optimal path.

C. Optimal Planners

Optimal motion planners find a collision free path, with a
trajectory that is optimal according to some cost function, for
example, the shortest distance or time to reach the final pose.
Previously this has been done using cubic splines to control
a trajectory through an environment for robot arms working
together [11]. However, without first reducing the environment
to a small search space, this problem is computationally
expensive and must be performed offline. As a result, this
method is intolerant to dynamic obstacles.

Cubic splines have also been used with kinematic visibility
graphs to generate a path [12]. However, creating the visibility
graph is time-expensive forcing the graph generation to be
performed off-line. A computationally faster method for cubic
splines uses randomly selected initial points and applies a

©

Goa

O

Fig. 1. Way-point Tuning. The way-point can be moved along the line to
get a curve with a faster velocity profile.

G Start

genetic algorithm (GA) [13]. Both, again, are only used on
static environments and are intolerant to dynamic obstacles.

Another method for optimal planning [14] has been de-
veloped for use in a dynamic environment, using a search
through a five dimensional space. The dimensions are the
pose (z,y, #), and translational and rotational velocities (v, w).
This method first finds the shortest distance path across an
occupancy grid using an A* search, then establishes how far
it can look ahead for the five dimensional search based on
computational power available. For the space established, each
dimension is discretised (e.g. 10cm for position, 7/16 degrees
for orientation) and the five dimensional space is searched.
This algorithm finds the shortest distance path globally, and
the shortest time trajectory locally. Finding the shortest time
trajectory globally would be preferable.

To find the shortest time trajectory globally, we must search
across the dynamic space for the full path. For closed, con-
trolled environments, such as a factory floor, offices, homes,
shopping malls, or robotic soccer fields, this is made possible
by mounting global sensors around the environment. The
difference in shortest distance and shortest time trajectories
produced is illustrated in figure 2(c).

Il. ALGORITHM

The algorithm we have developed is based on a graphical
representation of the environment in the form of a Delaunay
triangulation (Fig 2(b)). This graph contains useful information
for the purposes of path planning which is not present in a
\oronoi or visibility graph. Each arc on the graph represents
a line joining two obstacles that are closest to each other. It
is exactly this information that is important to a path planner
plotting paths through the gaps between obstacles. In order to
optimise the trajectory, we consider these arcs as constrained
variable way-points through which the trajectory must pass
(Fig 1). If we are treating the robot and obstacles as point
sources we must reduce the line segment representing the
constrained variable way-point along the arc to the robot’s
configuration space (the physical space the robot is able to
occupy). The ability to tune way-points gives an advantage
over Voronoi and visibility graphs.

Before searching we can prune any arcs that the robot
cannot traverse. These arcs occur along walls and when
obstacles are too close to each other for the robot to pass
between them. This has the effect of making obstacles in close
proximity to each other appear topologically as one obstacle.

This pruning, and the fact that the graph is a triangulation,
results in a low branching factor. If we also prevent the search
from entering the same triangle twice we have a branching
factor of 0, 1, or 2 at any point. This reduces the search space
considerably.

We search the graph using an A* search. This searches
based on a cost function f(n) = g(n) + h(n), where g(n)
is the cost of reaching a point in the graph, and h(n) is
an admissible heuristic (never overestimates) estimate of the
cost to the goal. A* expands nodes in order of smallest f(n)
first. We can continue expanding nodes after we have our first
solution to get a sorted list of all paths.

Ideally the algorithm would use the actual time the robot
will take to traverse the path (See Sec. 1I-A and 11-B) as g(n),
however this would be too computationally expensive to run at
frame-rate. For efficiency we use straight-line distances (SLD)
connecting the way-point on one arc with the way-point on the
next. We use the same cost function for h(n) connecting the
current way-point to the goal point.

We can calculate a lower bound on the traversal time
for a path by dividing the total SLD of the line segments,
by the maximum speed at which the robot can travel. This
time (timespp) is a lower bound because it is the shortest
distance path, and we are ignoring the kinematic and dynamic
constraints of the robot which prevents it from travelling at
maximum speed all the time.

Once a path of straight-line segments reaches the goal node
we convert it to a cubic spline trajectory, as discussed in 1I-
B. As shown in section II-A, we can calculate an accurate
estimate of the time (timecqpic) t0 traverse this path. Since this
trajectory is constrained by physics it will always take a longer
time to traverse than the straight-line estimate (timegrp)
above.

We continue converting straight-line segment paths, which
we get in timegp sorted order from the A* search, to cubic
spline trajectories until we get a path length that results in a
timespp estimate that is longer than that of our best cubic
spline trajectory (timesrp > best timecypic). NO further
searching is required at this point as it is impossible for that
path to result in a trajectory that will be better than the best one
already converted. This algorithm is shown as pseudo-code in
table I.

A. Parametric Cubic (PC) Curves

We use Parametric Cubic (PC) curves as they can represent
a space-time curve, or trajectory, algebraically. A unique PC
curve can be generated from the following information: ini-
tial position (P,,, P,,) and velocity (V,, V,,); final position
(Pe., P,,) and velocity (V,,V,,); and maximum speed (V)
and acceleration (A). We can solve a set of equations to find
the time (s) it takes to complete this curve.

Consider a curve of the form:

ro= () = (o) e s (o) es (2) e ()

TABLE |
PSEUDO-CODE OF THE ALGORITHM

for each frame
Update map from sensor data (Fig 2(a))
Build Delaunay graph from new map (Fig 2(b))
for each robot, calculate a trajectory
Perform A* Search on graph (using Euclidean distance)
Calculate straight line time ignoring dynamics:
timesrp = %
if goal point is reached then
if timesrp > best timeqypie then
stop searching
else
convert new path to cubic spline trajectory (Fig 2(c))
Calculate cubic spline time considering
dynamics (Sec lI-A): timeypic
if timecypic < best timeqypic then
best timecypic = timecupic
keep new cubic spline trajectory as best
continue searching
return best cubic spline trajectory

which we write in shorthand form as:
P(t) = at® + bt* + ¢t +d.)

We can calculate the equations for velocity and acceleration
at any point through differentiation:

P'(t) = 3at® + 2bt + c, (3)

P”(t) = 6at + 2b. 4)

We assume the following initial and final conditions:

= ()= (7).
Po= (1) Pe= (7). ©

A = (P(0)P(s)P'(0) P'(s)) . (6)

Let:

Solving for ¢t = 0:

P(0) =d,P'(0) =c.)

Solving for t = s:
P(s) = as® + bs? + ¢s +d, (8)
P'(s) = 3as® + 2bs +c. 9)

These equations can be combined in matrix form as follows:

0 s 0 3s°
0 s2 0 2s

A=(a b c d) 0 s 1 1 (10)
1 1 0 O

O @]
Start O O God
@] O O o

0000

(a) An environment. (b) A Delaunay Graph.

Fig. 2.
Equation (2) then becomes:
t3
t2
P(t) = (@ b c d) ; (11)
1
0 s 0 353\ ' [t3
0 s2 0 2s 2
o A 0 s 1 1 t (12)
1 1 0 O 1
% =2 0 1\ [t
=2 3 0 0|t
_ 53 2
= AlL 22y of | (13)
= = 0 0/ \1

These equations uniquely determine the trajectory, once the
time s for traversing the entire path segment has been chosen.
For curve fitting applications, it is common to arbitrarily
choose s = 1 as it simplifies the equation. However, for our
trajectory planning task, we would like to choose the minimal
s satisfying the following dynamic constraint (which, for our
holonomic robot, we approximate with a unit circle in velocity
and acceleration space):

P"(t) | P'(%)

AV ERE
where A and V are the maximal acceleration and velocity of
the robot. From Equations (3) and (4) this becomes:

+ I <1, for0<t<s, (14)

1< [+ (PO)P() P (0)P(5)) &
2 —3s 0 s 6t 3t2
-2 3s 0 O 2 2t 2
s =252 0 {V 0 +4 1 } ‘ (15)
s -s2 0 0 0 0

Ideally, we would like to find the smallest (positive) value of
s such that the vector on the RHS of Equation (15) does not
exceed unit length for any ¢ between 0 and s. Unfortunately,
since the (vector-valued) function is quadratic in ¢ and quartic
in s, this problem is, in general, analytically intractable. How-
ever, provided that the lengths of the individual segments are
sufficiently small relative to the smoothness of the curve, we

(c) Differences between (d) Path Permutations.
distance and time cost

functions.

Ilustrations

can get a reasonable approximation by imposing the dynamic
constraint only at the endpoints. (In particular, if we were to
ignore friction by taking the limit as V' — oo, the vector-
valued expression in Equation (4) would become a linear
function of ¢, ensuring that it must achieve its maximum length
at one of the endpoints.) At the initial point, Equation (15)
becomes:

1§ |PA(O)+P‘£O)|2
-3V
_ ‘ 2 PIO Pﬂﬁs Vzo VIS 3V ‘2
AV \p, P, V,, V,.)|-2Vs+4s?
—Vs
Vi
= A2é284 % (Vyz> 82 X
2Vyo + Va, P,.— P, 2
_V<2Vyo+Vs)S+3v<Pys_Pyo>‘ (16)
Thus:
A2V264

2
Vi Vi 2Veo + Vi
< A_2 Zo 4 _ Zo . Zo Ts 3
4 N * (Vyo> i AV (Vyo) (2Vyo + Vs> §

V. P, — P,
oy (1) (B =B
Vyo PyS_Pyo
2
2Vao + Vi
2 xo Ts 2

_6v2 (2‘/10 + VIS) . <st - PIO)
2Vyo+vs PyS_Pyo

2 Pﬂas - Pﬂao ’

v <P7Js - PU0>
The kinematic constraint at the final point leads to an inequal-
ity of the same form, but with the roles of (xq, yo) and (x5, ys)
reversed.

The appropriate value of s will therefore occur at a root
of one of these two quartic equations. It is easy to see that
each of these equations must have at least one positive root.
Thus the desired value for s can be obtained by checking the
positive roots in increasing order, until one is found to satisfy
both constraints.

This value for s will be the minimum time the robot
can traverse the curve given the constraint in Equation (14).

(17

TABLE Il
SMOOTHING THE SPLINE

Initialise all variable way-points (k) to the position used in the A* search
and a velocity of the maximum speed (V) of the robot, in the direction
from point £ — 1 to point k£ + 1.
do

for each way-point ‘&’ (not including the end points)
Generate a Parametric Cubic (PC) curve from points k£ — 1
and k£ + 1. (Sec. 1I-A)
Find the intersection of this curve with the variable way-point
line at k&
Set the way-point at & to the position and velocity values
generated at the intersection.
if either position or velocity violate a constraint then
bring it back within the constraints
while changes are larger than error threshold or until time-out

When s is substituted back into Equation (13) we have a
unique representation for this trajectory. Additionally, by using
Equations (2), (3), and (4), we can calculate the position,
velocity, and acceleration at any time ¢ along the curve, where
0<t<s.

B. Cubic Spline Trajectory

A PC spline is a chain of PC curves where the final
position and tangent vector of one curve (say k), is the
initial position and tangent vector for the next (& + 1). A
set of simultaneous equations (often represented with a tri-
diagonal matrix [15]) can be used to find tangent vectors
for all & internal control points if the positions are known.
This produces the smoothest path along the PC spline. With
variable way-points the set of equations is under-constrained
and cannot be solved analytically. A smooth path is required
to optimize the trajectory. Smoothing the trajectory allows the
robot to maintain higher velocities for longer periods of time.
For this reason we developed a new algorithm for smoothing
the spline, shown below. It is essentially a gradient descent
method across the four dimensional space of position and
velocity at each way-point. (See table 11.)

Although the trajectories produced are not guaranteed to be
optimal, as they could fall into a local minimum, they are
almost always faster, and a more accurate representation, than
a path modelled using straight line segments for a dynamically
constrained path. An example of when this is sub-optimal is
when the maximal velocity and acceleration is sufficiently high
that instantaneous changes in direction (kinks in the path) are
possible. In this case a globally smooth curve is not optimal
for time.

I1l. IMPLEMENTATION DETAILS

The following assumptions and simplifications were made
for implementation:

1) All dynamic objects are treated as circles. The centre of
the circles are the vertices of the graph. The radii affect
the configuration space of the robot.

2) Walls are represented as point sources at regular in-
tervals along the wall. The separation between points

is approximately three times the size of the robot.
Delaunay arcs connecting points on the same wall are
pruned from the graph prior to searching.

3) The implementation of the graph allows four degree
polygons to exist if the conversion to two triangles would
result in a very thin triangle. This is required since very
thin triangles cannot be traversed in all directions.

4) The curves were further constrained to remove loops.
This was achieved by over-riding the magnitude of the
final velocity so that it does not need a “run up”.

IV. EXPERIMENTAL RESULTS

The algorithm presented was written in C and run under
Linux (A screen shot is shown in Fig. 3(b)). It was developed
for use in the robotic soccer competition: RoboCup Small-
Sized Robot league. The environment used is approximately
three by four meters. It is surrounded by walls and contains
ten robots of 0.18 meters diameter. The fastest teams move
at speeds up to 2.5ms! and accelerations of approximately
2.0ms~2. A single camera is mounted 3m above the field with
an unobstructed view of the environment [16].

Experiments were performed in simulation using a Pen-
tium 111 866MHz computer, and on real robots using a dual
processor 1800 Athlon MP computer. The faster computer
was required for the real experiments due to the increase in
computation required for full frame-rate image processing. The
robots are custom built small, omni-directional drive robots
equipped with radio transceivers to communicate with the
central computer [17]. Their maximum velocity was 1.5ms ™!
and maximum acceleration was 2.0ms =2,

We compare the algorithm with our path planner previously
used in RoboCup competitions, an A* search using straight-
line distance cost. The cases we examined (Illustrated in Fig.
3(a)) were finding a path/trajectory in:

1) trivial environments where a straight line path is possi-

ble;

2) an environment with the zig-zag layout; and

3) cluttered environments where an indirect path is re-

quired.

Extensive testing was performed in simulation. The results
shown in the graph (Fig. 3(c)) are from real-robot experiments
and show the average time taken to complete a path. Once
the robot’s destination point was reached, the original starting
point was set as a new destination point and the process was
repeated. The robot continued until 20 laps were completed
and the time taken was averaged. A new path/trajectory was
calculated at each frame.

For the trivial environment the SLD algorithm results in the
same path and trajectory as the cubic spline algorithm. This is
to be expected. Although the planned paths in the zig-zag case
differred, the traversed paths were identical due to overshoot
in motion control. In this case the trajectory planned by our
algorithm more accurately represents the one traversed than
that planned by the SLD algorithm.

For the randomly cluttered environment the SLD choice
varied greatly, sometimes taking almost twice as long as the

41-80s

I:I SLD
r - algorithm

o 3.6s

Time (seconds)T

Trivial

Zig-Zag Random Clutter

(a) Experimental Layouts.

Fig. 3.

cubic spline trajectory method. In some instances it took less
time, however this was due to errors in motion control.

In all experiments the average computation time for cal-
culating trajectories was low. Building the Delaunay graph
took approx. 2.9ms on the 866MHz PC and 2.4ms on the
dual 1800MHz PC. Plotting a trajectory based on the graph
took approx. 1.4ms on the 866 MHz PC and 0.4ms on the
dual 1800MHz PC. We consider the graph building to be
independent of the trajectory planning as it is done once, and
used by all robots.

These results show that this algorithm is efficient enough to
be run at frame-rate. This allows us to plan trajectories in a
dynamic environment.

V. CONCLUSION

In this paper we presented an algorithm to find the time-
optimal dynamic trajectory for mobile robots. Our system
represents the environment as a Delaunay triangulation. We
use an A* search to find all possible shortest distance paths.
We then convert each complete path to a more accurate
representation of an actual path using a PC spline consisting
of PC curve segments. From this we can calculate an accurate
estimate of the time required for each path. We continue to
convert shortest distance paths to shortest time paths until we
reach a path length that cannot possibly be better then our
shortest time path given the known velocity and acceleration
limits of the robot.

Due to the efficiency of this algorithm, it can be run at the
rate sensor data is collected and was tested at a frame rate of
25Hz. This allows it to handle dynamic obstacles.

Experimental results show that in most cases this algorithm
can plot time-optimal trajectories for multiple robots in real
time. There are limited cases where the path produced is sub-
optimal, such as when the velocity and acceleration constraints
permitted “kinked” paths.

ACKNOWLEDGMENT

The authors would like to thank the AECM and the ARC
Linkage grant LP0349147 for providing funding associated
with this project.

(b) Screen Capture.

(c) Experimental Results.

Experiments

[1]

[2]

[3]

[4]
[5]

[6]

[71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

REFERENCES

Ronald Arkin. Motor schema based mobile robot navigation. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA), pages 264-271,
1987.

0. Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. The International Journal of Robotics Research, 5(1):90-99,
1986.
Johann Borenstein and Yoran Koren. The vector field histogram -

fast obstacle avoidance for mobile robots. In Journal of the IEEE
Transactions on Robotics and Automation, 1991.

Dieter Fox et al. The dynamic window approach to collision avoidance.
IEEE Robotics and Automation Magazine, 1997.

Alberto Elfes. Occupancy grids: A stochastic spatial representation for
active robot perception. In Proceedings of the Sixth Conference on
Uncertainty in Al, July, 1990.

A. Zelinsky. A mobile robot exploration algorithm. In Journal of
the IEEE Transactions on Robotics and Automation, 8(6):707-717,
December 1992.

J.-C Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

Osamu Takahashi and R. J. Schilling. Motion planning in a plane using
generalized voronoi diagrams. In Journal of the IEEE Transactions on
Robotics and Automation, 5(2), April 1989.

D. T. Lee and R. L. Drysdale Ill. Generalized voronoi diagrams in the
plain. SIAM J. Comput., 10(1):73-87, Feb. 1981.

Vachirasuk Setalaphruk; Takashi Uneno; Yasuyuki Kono; Masatsugu
Kidode. Topological map generation from simplified map for mobile
robot navigation. In In Proc. of The 16th Annual Conference of Japanese
Society for Artificial Intelligence, 2002.

B. Cao; G.l. Dodds; G.W. Irwin. Constrained time-efficient and smooth
cubic spline trajectory generation for industrial robots. IEE Proceedings
Control Theory and Applications, 144(5):467-475, Sept 1997.

V. F. Munoz and A. Ollero. Smooth trajectory planning method for
mobile robots. Special issue on Intelligent Autonomous Vehicles of the
Journal of Integrated Computed-Aided Engineering, 6(4), 1999.
Kai-Ming Tse and Chi-Hsu Wang. Evolutionary optimization of cubic
polynomial joint trajectories for industrial robots. IEEE International
Conference on Systems, Man, and Cybernetics, 4:3272-3276, Oct 1998.
Cyrill Stachniss and Wolfram Burgard. An integrated approach to
goal-directed obstacle avoidance under dynamic constraints for dynamic
environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2002.

Bruce R. Dewey. Computer Graphics for Engineers. Harper and Row,
Publishers, 1988.

http://www.itee.uq.edu.au/lyeth/F180 Rules/index.htm.

Jason Thomas and Andrew Peel. Roobots team description. In RoboCup-
2002: Robhot Soccer World Cup VI, page In Press. Springer, 2003.

