Representation Beyond Finite States: Alternatives
to Push-Down Automata

Janet Wiles, Alan D. Blair and Mikael Bodén

1 Introduction

It has been well established that Dynamical Recurrent Networks (DRNs) can act
as deterministic finite-state automata (DFAs — see Chapters 6 and 7). A DRN can
reliably represent the states of a DFA as regions in its state space, and the DFA
transitions as transitions between these regions. However, as we shall see in this
chapter, DRNs can learn to process languages which are non-regular (and therefore
cannot be processed by any DFA). Moreover, DRNs are capable of generalizing in
ways which go beyond the DFA framework.

We will show how DRNs can learn to predict context-free and context-sensitive
languages, making use of the transient dynamics as the network activations move
towards an attractor or away from a repeller. The resulting trajectory can be
thought of as analogous to winding up a spring in one dimension and unwinding it
in another. In contrast to push-down automata, which rely on unbounded external
memory, DRNs must instead rely on arbitrary precision in order to process strings of
arbitrary length from non-regular languages. The issue of robustness and precision
will be discussed in relation to learning and generalization as well as Chomsky’s
competence/performance dichotomy.

1.1 Finding structure in continuous state space

There are many situations in which a DRN can properly be analyzed as implement-
ing a DFA (see Chapter 7). However, in processing a sequence, the state space of
a DRN does not always partition neatly into functionally discrete regions. This
point is critical to understanding the source of the power of DRNs to go beyond the
representational ability of DFAs, so is worth elaborating here.

A sequence of symbols processed by a DRN corresponds to a trajectory through
its state space. The DRN state space is typically defined over the real numbers —
which, given unbounded precision, theoretically gives rise to an unbounded number
of possible states (which we will refer to as points in the state space). In emulating
a DFA, points in the DRN state space cluster into functionally equivalent regions,
such that all points within one region generate the same sequence of outputs for
all possible future inputs. This definition of functional equivalence — based on the
response of the system to future inputs — derives from the definition of an infor-
mation processing state which underlies the theoretical foundations of automata
theory (Hopcroft and Ullman, 1979). Conversely, if a sequence of inputs causes tra-
jectories from one region of the DRN state space to diverge so that different outputs
are produced at some point in the future, then this region cannot be considered as
a single functional state. Functional equivalence also lies at the heart of extracting
DFAs from DRNs (see Chapters 7 and 12).

In this chapter we analyze the behavior of DRNs in which trajectories through
the DRN state space do not partition neatly into a finite number of discrete, func-
tionally homogeneous regions. Many DRNs show sensitivity to initial conditions

Language Machine Example

recursively enumerable Turing machine true QBFs
context-sensitive linear bounded automaton a”brc”
context-free push down automaton a™b"
regular finite state automaton a” (n odd)

Table 1: Chomsky hierarchy: correspondence between classes of languages and
classes of machines. QBF stands for “Quantified Boolean Formula” (see (Hopcroft

and Ullman, 1979), Section 13.4).

such that trajectories passing through arbitrarily close points in the DRN state
space later diverge to produce different outputs (Kolen, 1994). No finite discretiza-
tion of the state space can capture the behavior of such DRNs. We will demonstrate
such trajectories, explain their computational power, and show how that power al-
lows them to go beyond DFAs. Note that in this chapter we are concerned with
practical demonstrations of DRN computing abilities. Theoretical considerations of
their computational limits are considered in Chapter 9.

2 Hierarchies of languages and machines

In this section we briefly diverge from DRNs to review computational hierarchies of
machines and the tasks they can compute, as a basis for understanding the relative
difficulty of the tasks discussed in later sections.

2.1 The Chomsky hierarchy

The simplest kind of languages are the regular languages (as described in earlier
chapters). Chomsky pointed out that new, more powerful language classes were
needed in order to model the essential properties of human languages [Chomsky,
1956, 1959]. The hierarchy of language classes which he introduced has now become
the cornerstone of formal language theory.

DEFINITION: A (formal) language L is a (possibly infinite) set of strings of symbols
drawn from a finite alphabet A.

There are two standard ways to characterize a formal language. One way is to
specify a grammar (set of re-write rules) which generates it (i.e. produces all the
strings of the language, and no others); the other way is to specify an abstract
machine which recognizes it (i.e. tells whether any given string is in the language
or not). In the present context, it will be convenient to define the four classes of
languages that make up the Chomsky hierarchy — regular, context-free, context-
sensitive and recursively enumerable — in terms of the classes of machines recognizing
them — which are, respectively, finite state automata (DFA), push-down automata
(PDA), linear bounded automata (LBA) and Turing machines (TM). Note however
that the traditional approach has been to define each class of language in terms
of the class of grammars generating it, and then to prove the equivalence of the
corresponding machine-based characterizations (see (Hopcroft and Ullman, 1979),
for further details).

2.2 Regular and context-free languages

The definition of a DFA was given in Chapter 7; a PDA is essentially a DFA which
is additionally able to push and pop symbols from an external stack. The power
of a PDA to go beyond a DFA derives from the unbounded stack which, unlike
the states of a DFA, is not constrained to a finite size. Our notation is taken from

(Hopcroft and Ullman, 1979).

DEFINITION: A push-down automaton (PDA) is a system M = {Q, X, T, qo, 20, F,d},
where:

() is a finite set of states;

Y. is an alphabet, called the input alphabet;

I' is an alphabet, called the stack alphabet;

go in @ is the initial state;

zo in I' is a particular stack symbol, called the start symbol;

F C @ is the set of final states;

J is a mapping from @ x (¥ U {e}) x T to finite subsets of @ x I'*.

The interpretation of J§ is as follows: if (¢,7v) is an element of §(p,a, z) then the
PDA can, on reading input a, move from state p to state ¢, popping z from the
stack and pushing the symbols of the string + onto the stack. The empty string is
denoted e. If (¢,) € §(p, ¢, z) then the PDA can move from state p to state ¢, pop
z and push ~, without reading any input. M is called a deterministic PDA if two
additional conditions are satisfied:

(i) d(g,a, z) contains at most one element, for all a € ¥ U {e},
(if) if 6(q, e, z) is not empty, then §(q, a, z) is empty for all a € X.

A string « is recognized by M if M, starting in state go with the single symbol zg
on the stack, can read the symbols of a one at a time by some series of moves, and
finish in one of the designated final states, F.

DEFINITION: A language which can be recognized by a PDA is called a context-free
language (CFL). A language which can be recognized by a deterministic PDA is
called a deterministic context-free language.

As an example, consider the language £ = a™b”, which consists of the strings ab,
aabb, aaabbb, ... for all n > 0. In this language, every string has exactly the same
number of &’s as a’s. We cannot build a DFA to recognize £, because it would
be necessary to have a different state for each value of n (which is impossible by
definition, since the DFA only has a finite number of states). However, a PDA
can be constructed which recognizes a”b” by pushing symbols onto the stack as it
“counts” the number of a’s, and then popping those symbols from the stack one at
a time as it checks to see that there are the same number of #’s. Since the stack
depth is unbounded, the PDA is not limited to a finite number of a’s and &’s.

Virtually all computer languages are context-free. Natural languages have much
in common with CFLs (but are not quite the same). Examples of structures which
the stack of a PDA can be used to process include embedded clauses in natural
language, nested loops in computer languages and balanced parentheses in formal
languages.

2.3 Context-sensitive and recursively enumerable

In order to define the remaining two classes of the hierarchy, it is necessary to
introduce the Turing machine, which is essentially a DFA that is additionally able
to read and write to an external “tape”.

DEFINITION: A Turing machine is a system M = {Q,X, T, qo, B, F,}, where:

() is a finite set of states;

I is the finite set of allowable tape symbols,

B is a special symbol in I', called the blank,

3, a subset of [not including B, is the set of input symbols,
go in @ is the initial state;

F C @ is the set of final states;

d is a mapping from @ x T' to @ x T' x {L,r}

(0 may, however, be undefined for some arguments).

The following procedure is used to determine whether a given string « is accepted
by machine M. Initially, the string « is written on the left end of the tape one
symbol at a time. The rest of the tape (which extends infinitely to the right) is
filled with blanks. The machine then performs a series of moves, governed by the
mapping §. At each step, if M is in state p and reads x from the tape, M will
change to state ¢, write y to the tape and move the tape to the left [resp. right] if
d(p,x) = (q,y, L) [resp. (q,y, R)]. If the computation eventually halts in one of the
designated final states, the string is accepted.

DEFINITION: A linear bounded automaton (LBA) is a Turing machine which is
restricted to only writing on a portion of the tape whose length is bounded by some
linear function of the length of the input string.

DEFINITION: A language which can be recognized by an LBA is called a context-
sensitive language (CSL); a language which can be recognized by a Turing machine
is called recursively enumerable.

Turing machines are universal in the sense that any symbolic computation system
can be emulated by a Turing machine, and vice-versa. The set of recursively enu-
merable languages therefore includes any language which can be described by a
computable function.

It can be shown that each class in the Chomsky hierarchy is properly contained
in the next class. For example, the language of true Quantified Boolean Formu-
las is recursively enumerable but not context-sensitive (see (Hopcroft and Ullman,
1979), section 13.4). An example of a language which is context-sensitive but not
context-free is the language a™b”c”, consisting of the strings abe, aabbee, aaabbbece,
etc. PDAs are not able to process this language because they cannot “re-use” in-
formation once it has been popped off the stack. Interestingly, if a second stack
is added to a PDA, the resulting system acquires the full computing power of a
Turing machine (because each stack can be used to simulate one semi-infinite half
of the tape). Natural languages do occasionally make use of constructs requiring
more than a simple stack, but their use is rare; for example, we can say “John, Paul
and Ringo played guitar, bass and drums, respectively”.

2.4 Learning and induction

The remarkable thing about human language processing is our ability, once we have
“learned” a language, to produce new utterances which are accepted and understood
by others, even though those exact utterances have never been written or spoken
before. This process of language induction can be modeled with formal languages
using formal prediction or recognition tasks.

Prediction task:

A learning system is presented with a number of training strings, all of which belong
to the language. The system is then presented with a number of test strings (which
also belong to the language) one symbol at a time, and must predict, at each step,
what the next symbol in the sequence will be.

Recognition task:

A learning system is presented with a number of training strings — each string
labeled to indicate whether or not it is in the language. The system is then presented
with a number of test strings and must declare, for each of these strings, whether
or not it is in the language.

Language induction depends on certain assumptions about the framework within
which the language is likely to be found. Suppose, for example, that a learning
system is presented with the training strings a”b" for 0 < n < 10, and asked to
induce a language from these data. It is of course possible to build a DFA (with
22 states) which would accept exactly these 11 strings and no others. However, we
might be more impressed with a learning system which can generalize the pattern
of the input, and learn to accept new strings of the form a™ " for values of n greater
than 10. Note that this kind of generalization necessarily steps outside the DFA
paradigm, since it involves adding additional states to the DFA. We will see in
Sections 3.2 and 3.4 that DRNs are indeed able to generalize in this way, for both
recognition and prediction tasks. Therefore, with respect to generalization, DRNs
have properties which go beyond the DFA framework.

2.5 Alternative hierarchies

Chomsky’s hierarchy had substantial impact, particularly in the area of theoretical
computer science. The establishment of a correspondence between classes of lan-
guages that can be expressed with a given syntax, and classes of machines expressed
in terms of memory requirements, allows a deep understanding of these classes from
the two different perspectives.

However, Chomsky’s language hierarchy is not the only one that has been pro-
posed, and linguists have argued that natural languages do not neatly fit into any
particular class in the Chomsky hierarchy. Note in particular that the four classes of
machine used to define the Chomsky hierarchy have in common that they are essen-
tially discrete or symbolic in nature, and are distinguished by the type of memory
resources available to them (no external memory, an external stack, a linear bounded
tape, or an infinite tape). Researchers have more recently begun to study language
classes which correspond to dynamical systems (Moore, 1998). Dynamical systems
are not symbolic in nature, but continuous, and the limitation on their power is not
naturally defined in terms of external memory, but rather precision, as we shall see
in the next section.

2.6 Performance limitations

The remainder of this chapter will be devoted to a description of how DRNs can
learn to process context-free and context-sensitive languages. There is one caveat
we must mention first, namely the issue of robustness.

Physically implemented computation devices do not completely live up to the
capabilities of idealized constructs such as PDAs or Turing machines. Strictly
speaking, a digital computer with finite memory is really a finite state machine,
and therefore resides at the lowest rung of the Chomsky hierarchy (for example,
a four-gigabyte computer has 22% possible states). However, because of the expo-
nentially large number of states, it is more useful to think of a computer as if it
were implementing a Turing machine, but keeping in mind that it is constrained by
performance limitations. This typically means that it can be relied upon to perform
any computation perfectly, unless it is provided with input greater than a certain
critical size, in which case it will either produce a wrong answer, or halt with an
“out of memory” or “stack overflow” error message. This is known as catastrophic
failure.

An analog computer such as a DRN is also subject to performance limitations
— not because of finite memory space but because of limited precision; a physically
implemented DRN is subject to noise, which causes tiny random fluctuations in the
activation levels of the units. Rather than catastrophic failure, these fluctuations
will typically produce a pattern of graceful degradation. This means that the DRN
will sometimes make mistakes, and that the probability of making a mistake grad-
ually increases as the input gets longer and more complex, representing a soft limit
rather than a hard one. Since DRNs rely on an infinitesimally fine subdivision of
their state space in order to process non-regular languages, this process is suscep-
tible to errors when noise is introduced into the system. In other words, although
DRNs are capable of implementing non-regular languages, it has been shown that
they are not able to do so robustly (Casey, 1995; Maass and Orponen, 1998). We
will return to this point in section 3.2.

3 DRNs and non-regular languages

3.1 Augmenting DRNs with an external stack

Inspired by the formal description of a PDA, LBA or Turing machine as a DFA
augmented by a stack or tape, the early work in training DRNs on context-free
languages involved similarly augmenting the DRN with an external stack or tape.
DRNs have been shown to learn to operate the read, write and shift transitions for
a Turing machine. (?).

Further integration of the stack into the DRN is achieved in the Neural Network
Pushdown Automaton (NNPDA) which employs a continuous stack with differen-
tiable dynamics. The network in the NNPDA can be trained to induce the state
transition rules and to use and manipulate the stack (Giles et al., 1990; Das et al.,
1993; Sun et al., 1998). The NNPDA implements a state-to-state mapping

St+1 :Gs(SﬁRtaIt;Ws)a (1)

where S is the continuous state, R is what is available on the continuous stack,
I is the input symbol (represented as a bit vector) and W, is the weight matrix.
Moreover, the NNPDA determines its next stack action by

At+1 = Ga(Sta Ry, Iy Wa)7 (2)

where A is the stack operation on the current input symbol: push, pop or none,
together with its length (utilizing the continuum of A) which corresponds to the

size of the space for storing the symbol on the continuous stack. W, is the weight
matrix for the action mapping. The infinite memory required by the model can be
seen from the stack-reading map

Rt IGr(Al,AQ,...,At,Il,IQ,...,It). (3)

Hence, the R value depends on the entire history of stack operations and past inputs.
NNPDAs have been shown to learn to recognize strings in a number of small CFLs
(Sun et al., 1998).

Zeng et al. [1994] present a DRN that uses discretization in its feedback links.
The discretization automatically performs clustering (as understood in a completely
analog network) to enforce stability. Furthermore the external stack is completely
discrete. Using pseudo-gradient learning the network acquires stable representations
for small CFLs from example sequences.

The use of an infinite stack obviates the need for unbounded precision to encode
recursive structure. It is even sometimes possible to identify a finite (and stable)
number of states (in the network) and combine these with the stack to extract a
symbolic PDA from a trained NNPDA (Sun et al., 1998; Zeng et al., 1994).

3.2 DRNs without an external stack

In the abovementioned studies, the DRN itself is only required to play the same
role within the overall system that is played by the DFA component of a PDA,
LBA or Turing machine. It seems natural to ask: could a DRN learn to perform
the task of the whole system, rather than just the DFA part of it? Because it has
been proven that a DRN cannot robustly process non-regular languages, is it also
the case that the learning and inductive bias of a DRN must be characteristic of
regular languages?

To put it another way, any attempt by a DRN to process a non-regular language
must ultimately be non-robust in the sense that noise injected into the system will
cause it to make mistakes when it tries to process deeply embedded structures. But
how important is robustness? Linguists have argued persuasively that the languages
invented or induced by humans are inherently non-regular, notwithstanding the fact
that humans also make mistakes while processing these languages, particularly when
deeply nested structures are involved. That is, humans have a competence for non-
regular languages, even though their performance on those languages is less than
perfect (?)!. Can the same argument be made for DRNs? What evidence might we
consider to test the claim that DRNs are learning non-regular languages? First, we
might ask whether a DRN trained on sequences from a CFL is able to generalize to
other sequences from the same CFL (e.g., more deeply nested structures). Second,
it would be telling if a DRN trained on sequences from a regular language showed
some bias towards inducing a non-regular language.

Over the past ten years, evidence has been accumulating for both of these aspects
of DRN learning. There are now several studies showing that Simple Recurrent Net-
works (SRNs; (Elman, 1990)) trained to predict the next word in sentence process-
ing tasks, are able to generalize levels of center embedding [Elman, 1991 — see also
Christiansen and Chater, 1999 and Elman, 1993]. The Recursive Auto-Associative
Memory model (RAAM) can also learn tree structures for simple context-free lan-
guages, with some systematic generalization to unseen cases (Pollack, 1987; Pollack,
1990; Blank et al., 1992; Kwasny and Kalman, 1995).

In addressing the second point, it is important to consider the type of evidence
that would be accepted as showing that a DRN had induced either a regular or a
non-regular language. As mentioned in section 8.1, once a DRN has been trained,

! This idea really goes back to the lange/parole distinction of (Saussure, 1915).

it is possible to extract from it a DFA which approximates the behavior of the DRN
(see Chapters 7 and 12). The approximation is based on functional equivalence of
regions in state space. In some cases, the DRN induces a regular language which is
exactly modeled by the DFA. In others, the DRN induces a non-regular language,
which cannot be completely modeled by any DFA. An explanation for this seeming
contradiction is found by analyzing the networks at a higher resolution, allowing
them to be viewed as infinite state systems (KKolen, 1994; Pollack, 1991; Crutchfield
and Young, 1991). Extraction methods then produce a series of non-deterministic
finite-state machines, modeling the DRN’s behavior at successively more refined
levels of detail. Indeed, studies have shown that neural networks sometimes prefer
to induce a non-regular language, even when presented with data which could be
described by a simple DFA (Blair and Pollack, 1997).

The approximation of a DFA by a DRN can be visualized in terms of discrete
regions of the DRN state space corresponding to the states of the DFA. When a
DRN computes a non-regular language, such visualization into regions of equivalent
functionality is no longer appropriate. In the next subsection, we show how the
behavior of a DRN trained on a simple CFL can be understood in terms of dynamical
systems theory, and show how such analysis allows visualization of its performance.

3.3 Representing counters in recurrent hidden units

In this section, we show how simple counting tasks, such as predicting the next
symbol from the language a™b", can be performed by a DRN without an external
stack. The simulations reviewed in this section can be seen as a possible mechanism
by which the studies referred to above achieve their generalization results.

The network is presented with a sequence of strings from the language a 5" and
must predict, at each time step, the next symbol in the sequence. For example,
suppose part of the input sequence is aaaaabbbbbaabbaaabbb . .. (a®b’a*b*a’b3). We
do not expect the network to correctly predict the first b in the sub-sequence a®b®
(since the number of a’s is arbitrary) but we do expect it to successfully predict
the next four b’s, and in particular to predict the following a (which is the initial
symbol of the next sub-sequence). Wiles and Elman [1995] demonstrated that SRNs
with two inputs, two fully recurrent hidden units and two outputs (using the logistic
transfer function) can be trained to perform this prediction task by backpropagation
through time (BPTT; (Williams and Zipser, 1988)).

The studies reviewed here use one-shot encodings for their inputs and outputs
(where one unit is “on” and all the others are “off”). For a™b" the a input is
represented by (1, 0), the b input by (0, 1). The most frequently found solution uses
the natural property of recurrent hidden units with self weights, to converge to an
attractor or diverge to a limit cycle. By matching the rate of convergence in one
recurrent hidden unit with the rate of divergence in another, a DRN can “count”
up and down (Rodriguez et al., 1999).

To elaborate on how the network accomplishes this task we introduce some
concepts from dynamical systems theory. If we ignore (for the moment) some
complications introduced by non-linear output functions, a DRN can be seen as
a discrete-time dynamical system F. The activation vector X € R” of the n state
variables (activation of n recurrent hidden units) changes over time as follows:

Xt_|_1 = F(Xt —|— It), (4)

where I; is the externally provided input pattern at time f. In our case there are
two (non-linear) automorphisms F, and Fj (corresponding to inputs a and b). Since
these automorphisms can be applied in any order (determined by the input string)
it is useful to think of them as comprising an Tterated Function System [Barnsley,

1993 — see also Chapter 5].

A fized point of F is a state X € R™ for which X = FX. The standard tech-
nique of linearization provides a convenient way of determining the characteristic
properties of a non-linear system in the neighborhood of a fixed point — as either
attracting or repelling, with differing periodicity, in different directions, etc. The
Jacobian (partial derivative matrix) of the (non-linear) state transformation allows
us to analyze the system around fixed points as if it were linear. As an example,
the Jacobian matrix for two state variables (z,y) is

w4 w4
dxy 9y

J(l‘t, yt) = M M . (5)
oxy 9y

An eigenvalue of a linear map F is a scalar A and an eigenvector of F is a vector
v such that Fv = Av. The eigenvalue expresses the rate of contraction or expansion
of F along the principal dimension given by the corresponding eigenvector. When
studied close to the fixed points of the system, the Jacobian has eigenvalues and
eigenvectors which approximate the way the non-linear system changes over time
(Rodriguez et al., 1999).

The non-linearities also pose a problem for determining the location of the fixed
points. By first estimating the locations of fixed points (by iteration) it is then pos-
sible to use standard techniques for estimating the roots of the system of equations
(Rodriguez et al., 1999). Consider, for example, a 2-dimensional fully recurrent
state space using the logistic transfer function f(x) = 1/(1 + exp™®):

Tt41 = f(xthx + Yt Way + wxG) (6)
Yer1 = FTeWye + YeWyy + Wyp) (7)

where wg; is the self weight of z, wy, is the self weight of y, w,, is the weight on
the connection from y to z, wy, is the weight on the connection from z to y, and
wye and wyg are the biases for « and y, respectively. The fixed point (&, §) (which
is not changing over time) can thus be determined by combining

- EWge + Wy +In _%
i=- == ®)
Way
and _—
JWyy + Wyg + In(—L==
PO e Y (7))

Wy

The combination can be fine-tuned, for example, by Newton’s method [cf. Tino et
al., 1995].

The trajectory of activations in the recurrent hidden unit space of a trained
network, as it processes the sequence a®b®, is shown in Figure 1(a) . As the a’s
are presented, the state converges towards an attracting fixed point at (0.44,0.03).
On presentation of the first b, the state shifts to the neighborhood of a repelling
fixed point at (0.05,0.41). Successive b’s then take the state steadily away from
the repeller, in such a way that the final b pushes it over the boundary from the
“predict b” region to the “predict @” region (implemented by the network’s output
weights). Figure 1(b) shows the linearizations (around their fixed points) of the
transformations defined by the F, map and the Fy, map. Note that in Figure 1(b) the
largest (absolute) eigenvalues of these linearizations are approximately reciprocal
(—0.775 x —1.36 ~ 1.0). Basically this means that the rate at which Fj, converges
towards its (attracting) fixed point corresponds to the rate at which Fj diverges
from its (repelling) fixed point.

The negative sign of the eigenvalue indicates that the activations oscillate around
each of the fixed points. Positive eigenvalues correspond to a monotonic solution, for

091 091

: ; ~0.775,-0.395
09 1 0 o1 02 03 04 05 06 07 08 09 1
HL

(a) State trajectory. (b) Eigenvectors.

Figure 1: A trajectory in the state space of a first order SRN with two recurrent
hidden units, processing a®b®. (a) Each successive @ in the sequence a; to ag causes
an oscillation towards the F, fixed point at (.44,.03). On presentation of the first b,
the state jumps to a point governed by Fj, and then with each successive b diverges
from the Fy fixed point at (.05,.41), oscillating outwards. The rate of divergence
of the state under F, matches the rate of convergence under Fy, so that the last b
in the sequence (in this case bg) crosses the hyperplane defined by the output unit
(shown as a dotted line). The DRN then predicts correctly that the next input will
be an a. (b) The eigenvectors corresponding to F, and Fp in (a).

which the activations always remain on the same side of the fixed point. Networks
sometimes converge on a monotonic solution, but these networks typically do not
generalize as well as the alternating, oscillatory solutions. If a fixed point has an
absolute eigenvalue below 1 for one of its eigenvectors, it is attracting along the
principal dimension given by the associated eigenvector. Similarly, if the absolute
eigenvalue is above 1, the fixed point repels.

The potential of the architecture and oscillatory dynamics (but using a linear
state transformation) has been investigated using hand-crafted (analytically de-
rived) networks (Holldobler et al., 1997). Using such networks, it has been shown
that finely tuned SRNs can correctly predict sequences of arbitrary length from the
a”b” language, given arbitrary precision.

We take such generalization results, combined with the dynamical systems anal-
yses that show matching converging and diverging trajectories, as evidence that the
network’s competence should be properly characterized as learning a non-regular
language.

3.4 Learning, stability and generalization for «"b"

The previous section outlined a typical solution for representation of a CFL by a
DRN. In this section, we continue our analysis of DRN computation by reviewing
the learning and stability of DRNs trained on sequences from CFLs.

SRNs have been successfully trained on the a”b” prediction task by BPTT using
an incremental learning approach (Wiles and Elman, 1995). Even though they
were only trained on strings of length n = 1 to n = 11, many of them successfully
generalized to correctly predict strings of length n = 12 and n = 13. One network
was observed to generalize to n = 18. Had the network been constructing specific
states in a DFA for each string in the training data of length n, no states would

10

have been constructed for strings longer than those in the training set, and hence,
the generalization observed would not have been possible.

However, the task of the network in learning to march the converging and di-
verging oscillating trajectories is not an easy one for BPTT. It has been found that
SRNs encounter instabilities as they learn this task by BPTT, repeatedly losing the
solution, then finding it again (Tonkes et al., 1998; Bodén et al., 1999). The reason
for the problem lies in the shape of the search space.

For the most frequently found solution to ¢”b” in an SRN with two recurrent
units, the presentation of a particular input largely results in oscillation along a
single dimension. For the other input condition the other dimension is similarly
used. Basically this means that at any time one recurrent unit is oscillating, while
the other is passive (Bodén et al., 1999).

If we consider a single recurrent hidden unit (with a bias) it is possible to identify
combinations of the self weight and the bias which lead to oscillating behavior. As
can be seen in Figure 2(a) — which illustrates the number of oscillations that can
be fitted in before a fixed point or limit cycle is reached — the self weight and bias
need to be precisely coordinated. If the weights (self weight and bias) are positioned
on the outside of the ridge in Figure 2(a), convergent oscillations (as found for Fy)
appear. The weight configurations on the inside give rise to divergent behavior
(as found for Fp). Thus the ridge corresponds to a bifurcation boundary between
weights that allow a fixed point to be attracting and those that make the same
fixed point repelling. The bifurcation occurs when the eigenvalue (of the Jacobian)
is exactly -1 (for which the system is non hyperbolic). An additional complication is
that to achieve a sufficient number of oscillations, weights must be located close to
the boundary (one recurrent unit on the inside, one on the outside). When weights
cross this boundary, the system’s behavior around the fixed point changes radically,
from attracting to repelling or vice versa (Bodén et al., 1999). If the weights are
initialized to small values (close to the origin in Figure 2(a)) learning must take
the system (weights of one recurrent hidden unit) through at least this particular
bifurcation.

The instability of gradient learning can thus be explained by the proximity
between the optimal weights and the bifurcation boundary. Figure 2(b) illustrates
typical weight changes during a training session. Three phases can be discerned:
(1) weights smoothly move closer to solution space, (2) the system’s behavior varies
radically when the weights are close to the bifurcation boundary, indirectly affecting
weight changes which start fluctuating heavily, (3) a large weight change moves the
system out of solution space. The error gradient tends to be complex in the vicinity
of the bifurcation border; the magnitudes of the resulting gradients make gradient
based learning inappropriate and unreliable (Bodén et al., 1999).

One way to combat these instabilities is to use an evolutionary hillclimbing
algorithm, where the weights are only updated if a network with new weights is
found to predict a series of test strings better than the previous network (Tonkes
et al., 1998). This algorithm was able to learn the task stably, and also provided a
stronger demonstration of generalization. During training, the network sometimes
jumped several levels, generalizing to strings up to 14 symbols longer than it had
previously encountered (n=42 to n=49).

3.5 Learning the context-sensitive language a"0"c¢"

The previous subsection described how a first order network with two recurrent
hidden units could learn to predict the CFL a”b". We might expect that a second
order network, or a network with more recurrent hidden units, might be able to
predict more complex languages such as the context-sensitive language a”b”¢". It
has been shown that a first order SRN with three recurrent hidden units can learn

11

o 0,0 0
. o o:':v

Weightvalue

22

1 . 1 | . 1 .)
" 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bias -2 Self weight Epochs

(a) Oscillation performance. (b) Weight changes.

Figure 2: (a) The oscillation performance (number of oscillations fitted in before
converging into a fixed point or diverging into a limit cycle) for a self recurrent
unit with a bias. A maximum of 50 oscillations were plotted. (b) The instability
of learning can be observed by looking at the weight changes of two connected self
recurrent units during a typical run (the influence of inputs have been included in
the biases). The error gradients when weights are in the vicinity of the bifurca-
tion boundary are complex, making gradient based weight adaptation unstable and
unreliable.

the a™b"¢” prediction task (Chalup and Blair, 1999) using the hillclimbing algorithm
referred to above. Interestingly, SRNs seem unable to learn the same task by BPTT
— presumably due to the instabilities described in Section 3.4. However, sequential
cascaded networks (SCNs; (Pollack, 1991)) with either two or three recurrent hidden
units and with shortcut connections, have been able to learn this context-sensitive
task by BPTT [Bodén and Wiles, in press]. The state trajectories of these networks,
shown in Figures 3 and 4, display the same basic characteristics as the original SRN
of (Chalup and Blair, 1999).

The way the task is accomplished by an SCN can be understood by comparison
with the solutions for the a™b" prediction task described in Section 3.3. The same
basic description applies to the 3D case (Figure 3) and the 2D case (Figure 4). The
network begins by counting up the number of a’s as it converges to an attractor.
Upon presentation of the first b, the activation shifts to a more central part of the
hidden unit space, where it employs a two-pronged strategy of counting down by
divergence from a repeller along one principal dimension (given by one eigenvector,
as can be seen in Figure 4(b)) while simultaneously counting up by convergence to
an attractor along another dimension (given by another eigenvector). The former
ensures that the first ¢ is predicted correctly, while the latter prepares for the ¢’s to
be counted down by divergence from a new repeller, ready to predict the a at the
beginning of the next string.

The linearizations of the 2D case (around the fixed points) are shown in Fig-
ure 4(b). Interestingly the eigenvalues, collected over a large number of runs, demon-
strate that the dynamics employed for a”b” extend naturally to a™b™¢™ [Bodén and
Wiles, in press]. One eigenvalue of the F, fixed point is approximately reciprocal to
one of the eigenvalues of the Fy fixed point. The second eigenvalue of the Fj fixed
point is approximately reciprocal to one of the eigenvalues of the fixed point of F.
Moreover, the eigenvectors were found to be aligned so as to enable appropriate

12

Figure 3: The trajectory in the state space of an SCN with three recurrent hidden
units, processing a®b%¢®. The state converges (counts up) while processing the a’s,
then on processing the b’s, it diverges (counts down) in one dimension and converges
in another. Finally, in processing the ¢’s, it diverges, oscillating outwards to a point
where the final ¢ predicts the first a of the next sequence (output hyperplane is not
shown here).

0488, -1.34

5 I
X X 0 01 02 03 04 05 06 07 08 09 1
Al 1

(a) State trajectory. (b) Linearization.

Figure 4: (a) The trajectory in the state space of an SCN with two recurrent hidden
units processing a®b%¢® and (b) its linearizations around the fixed points.

13

communication between the three autonomous systems. Hence, the inductive bias
of DRNs, revealed through training of the networks, explores dynamics for predict-
ing a CFL which extend naturally to at least one CSL — in sharp contrast with
what is implied by the Chomsky hierarchy [Bodén and Wiles, in press].

Other context-sensitive language tasks have been implemented in hand-crafted
DRNs, without addressing learning issues (Steijvers and Griinwald, 1996).

4 Generalization and inductive bias

Savitch (Savitch, 1989) argues that an essentially infinite language can be under-
stood intuitively as a set of strings which have a simpler description as a subset of
an infinite language, compared to their description as a finite set. For example, con-
sider the set of strings containing an odd number of a’s, with at most 101° symbols.
The DFA that would recognize just these strings and no others would be finite, but
extremely large. By contrast, the (infinite) set of all strings with an odd number of
a’s can be described by a much simpler DFA with just two states.

Extending Savitch’s idea, we introduce the term essentially context-free to de-
scribe data which have a simpler description as part of a context-free language,
rather than as part of a regular language. Of course the notion of “simplicity”
is not absolute, but depends on the framework within which the description is to
be framed. Gold’s theorem (Gold, 1967) says that CFLs cannot be learned from
positive examples categorically; however, given structural assumptions, learning a
PDA can be reduced to learning a DFA.

Studies of learning enable us to expose the inductive bias of a particular class of
machines. We have considered such evidence in this chapter. Two frameworks may
be equivalent with respect to what they can represent, and yet differ with respect
to learning and generalization. With finite precision, any trained DRN may be
analyzed as a DFA, albeit with a huge number of states. The network that learned
a”b™ to n = 49 could be described using 100 states in a DFA description. Alter-
natively, it could be represented as a dynamical system emulation of a CFL, using
just four eigenvectors in which the convergence rate into an attractor is matched
by the divergence rate from a corresponding repeller.

The DFA analysis does not account for the fact that the language induced by
the DRN may be described much more simply as a finite approximation to a CFL
and generalizes in a way which is best described in terms of context-free languages
rather than regular ones.

Symbolic and dynamical systems may naturally induce different languages from
the same set of training strings. The “natural” class of languages induced by DRNs
may even be some completely new class which does not correspond to any particular
rung of the Chomsky hierarchy (see Chapter 15).

5 Conclusion

This chapter examined the abilities of DRNs to go beyond the representational ca-
pacities of finite-state automata. In particular, it described how networks with real
valued transfer functions in their hidden units can represent and learn context-free
languages by using the transient dynamics around the fixed points in the recurrent
hidden unit activation space.

Analyzing DRNs as dynamical systems in terms of attractors gives a very dif-
ferent perspective than analyzing them in terms of finite regions. The simulations
reviewed in this chapter show that one cannot deduce generalization properties in
learning by considering only the classification of the architecture in terms of the

14

Chomsky hierarchy. We have explained the dynamical mechanisms whereby DRNs
generalize CFLs and CSLs, even though they can only be robustly equivalent to
DFAs. Along with many other researchers, we consider that precision provides a
better resource constraint in classifying DRNs in a computational hierarchy than
the memory constraints which are conventionally used for discrete symbolic systems.

References

Barnsley, M. (1993). Fractals Everywhere. Academic Press, Boston, 2nd edition.

Blair, A. and Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural
Computation, 9(5):1127-1142.

Blank, D. S., Meeden, L. A., and Marshall, J. B. (1992). Exploring the sym-
bolic/subsymbolic continuum: A case study of RAAM. In Dinsmore, J., editor,
The Symbolic and Connectionist Paradigms: Closing the Gap, pages 113-148.
Lawrence Erlbaum, Hillsdale, NJ, USA.

Bodén, M. and Wiles, J. Context-free and context-sensitive dynamics in recurrent
neural networks. Connection Science. Submitted.

Bodén, M., Wiles, J., Tonkes, B., and Blair, A. (1999). Learning to predict a
context-free language: Analysis of dynamics in recurrent hidden units. In

Proceedings of ICANN’99.

Casey, M. (1995). Computation in discrete-time dynamical systems. PhD thesis,
Department of Mathematics, University of California at San Diego, La Jolla,

CA.

Chalup, S. and Blair, A. (1999). Hill climbing in recurrent neural networks for learn-
ing the a™b"”c™ language. In Proceedings of the Sizth International Conference
on Neural Information Processing.

Chomsky, N. (1956). Three models for the description of language. IRE Transac-
tions on Information Theory, 2:113-124.

Chomsky, N. (1959). On certain formal properties of grammars. 2(2):137-167.

Christiansen, M. and Chater, N. (1999). Toward a connectionist model of recursion
in human linguistic performance. Cognitive Science, 23:157-205.

Crutchfield, J. and Young, K. (1991). Computation at the onset of chaos. In Zurek,
W., editor, Proceedings of the 1988 Workshop on Complexity, Entropy and the
Physics of Information, pages 223-269, Redwood City, CA. Addison-Wesley.

Das, S., Giles, C. L., and Sun, G.-Z. (1993). Using prior knowledge in a NNPDA
to learn context-free languages. In Advances in Neural Information Processing
Systems §, pages 65-72. Morgan Kaufmann.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179-211.

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and
grammatical structure. Machine Learning, 7:195-225.

Elman, J. L. (1993). Learning and development in neural networks: The importance
of starting small. Cognition, 48:71-99.

15

Giles, C., Sun, G., Chen, H., Lee, Y., and Chen, D. (1990). Higher order recurrent
networks & grammatical inference. In Touretzky, D., editor, Advances in Neural
Information Processing Systems 2, pages 380-387, San Mateo, CA. Morgan
Kaufmann Publishers.

Gold, E. (1967). Language identification in the limit. Information and Control,
16:447-475.

Holldobler, S., Kalinke, Y., and Lehmann, H. (1997). Designing a counter: An-
other case study of dynamics and activation landscapes in recurrent networks.
In Proceedings of KI-97: Advances in Artificial Intelligence, pages 313-324.
Springer Verlag.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Addison—Wesley, Reading, MA.

Kolen, J. (1994). Fool’s gold: Extracting finite state machines from recurrent net-
work dynamics. In Cowan, J., Tesauro, G., and Alspector, J., editors, Advanves
in Neural Information Processing Systems 6, pages 501-508, San Francisco, CA.
Morgan Kaufmann.

Kwasny, S. C. and Kalman, B. L. (1995). Tail-recursive distributed representations
and simple recurrent networks. Connection Science, 7(1):61-80.

Maass, W. and Orponen, P. (1998). On the effect of analog noise in discrete-time
analog computations. Neural Computation, 10(5):1071-1095.

Moore, C. (1998). Dynamical recognizers: Real-time language recognition by analog
computers. Theoretical Computer Science, 201:99-136.

Pollack, J. (1987). On Connectionist Models of Natural Language Processing. PhD
thesis, Computer Science Department, University of Illinois, Urbana, IL.

Pollack, J. (1991). The induction of dynamical recognizers. Machine Learning,
7:227-252.

Pollack, J. B. (1990). Recursive autoassociative memories. Artificial Intelligence,

46(1):77-105. raam.

Rodriguez, P., Wiles, J., and Elman, J. (1999). A recurrent neural network that
learns to count. Connection Science, 11(1):5-40.

Saussure, F. d. (1974/1915). Course in General Linguistics. Fontana/Collins, Lon-
don.

Savitch, W. J. (1989). Infinity is in the eye of the beholder.

Steijvers, M. and Griinwald, P. D. G. (1996). A recurrent network that performs a
context—sensitive prediction task.

Sun, G., Giles, C., Chen, H., and Lee, Y. (1998). The neural network pushdown
automaton: Architecture, dynamics and training. In Giles, C. and Gori, M.,
editors, Adaptive Processing of Sequences and Data Structures: Lecture Notes
in Artificial Intelligence, pages 296-345. Springer Verlag, New York, NY.

Tino, P., Horne, B., and Giles, C. (1995). Fixed points in two-neuron discrete time
recurrent networks: Stability and bifurcation considerations. Technical Report
UMIACS-TR-95-51 and CS-TR-3461, Institute for Advance Computer Studies,
University of Maryland, College Park, MD 20742.

16

Tonkes, B., Blair, A., and Wiles, J. (1998). Inductive bias in context-free language
learning. In Proceedings of the Ninth Australian Conference on Neural Networks

(ACNN98), pages 52-56.

Wiles, J. and Elman, J. (1995). Learning to count without a counter: A case study
of dynamics and activation landscapes in recurrent networks. In Proceedings
of the 17th Annual Conference of the Cognitive Science Society. MIT Press.

Williams, R. and Zipser, D. (1988). A learning algorithm for continually running
fully recurrent neural networks. Technical Report ICS Report 8805, Institute
for Cognitive Science, University of California at San Diego, La Jolla, CA.

Zeng, Z., Goodman, R. M., and Smyth, P. (1994). Discrete recurrent neural net-
works for grammatical inference. IEEFE Transactions on Neural Networks,

5(2):320-330.

17

