
Representation Beyond Finite States: Alternativesto Push-Down AutomataJanet Wiles, Alan D. Blair and Mikael Bod�en1 IntroductionIt has been well established that Dynamical Recurrent Networks (DRNs) can actas deterministic �nite-state automata (DFAs | see Chapters 6 and 7). A DRN canreliably represent the states of a DFA as regions in its state space, and the DFAtransitions as transitions between these regions. However, as we shall see in thischapter, DRNs can learn to process languages which are non-regular (and thereforecannot be processed by any DFA). Moreover, DRNs are capable of generalizing inways which go beyond the DFA framework.We will show how DRNs can learn to predict context-free and context-sensitivelanguages, making use of the transient dynamics as the network activations movetowards an attractor or away from a repeller. The resulting trajectory can bethought of as analogous to winding up a spring in one dimension and unwinding itin another. In contrast to push-down automata, which rely on unbounded externalmemory,DRNs must instead rely on arbitrary precision in order to process strings ofarbitrary length from non-regular languages. The issue of robustness and precisionwill be discussed in relation to learning and generalization as well as Chomsky'scompetence/performance dichotomy.1.1 Finding structure in continuous state spaceThere are many situations in which a DRN can properly be analyzed as implement-ing a DFA (see Chapter 7). However, in processing a sequence, the state space ofa DRN does not always partition neatly into functionally discrete regions. Thispoint is critical to understanding the source of the power of DRNs to go beyond therepresentational ability of DFAs, so is worth elaborating here.A sequence of symbols processed by a DRN corresponds to a trajectory throughits state space. The DRN state space is typically de�ned over the real numbers |which, given unbounded precision, theoretically gives rise to an unbounded numberof possible states (which we will refer to as points in the state space). In emulatinga DFA, points in the DRN state space cluster into functionally equivalent regions,such that all points within one region generate the same sequence of outputs forall possible future inputs. This de�nition of functional equivalence | based on theresponse of the system to future inputs | derives from the de�nition of an infor-mation processing state which underlies the theoretical foundations of automatatheory (Hopcroft and Ullman, 1979). Conversely, if a sequence of inputs causes tra-jectories from one region of the DRN state space to diverge so that di�erent outputsare produced at some point in the future, then this region cannot be considered asa single functional state. Functional equivalence also lies at the heart of extractingDFAs from DRNs (see Chapters 7 and 12).In this chapter we analyze the behavior of DRNs in which trajectories throughthe DRN state space do not partition neatly into a �nite number of discrete, func-tionally homogeneous regions. Many DRNs show sensitivity to initial conditions1



Language Machine Examplerecursively enumerable Turing machine true QBFscontext-sensitive linear bounded automaton anbncncontext-free push down automaton anbnregular �nite state automaton an (n odd)Table 1: Chomsky hierarchy: correspondence between classes of languages andclasses of machines. QBF stands for \Quanti�ed Boolean Formula" (see (Hopcroftand Ullman, 1979), Section 13.4).such that trajectories passing through arbitrarily close points in the DRN statespace later diverge to produce di�erent outputs (Kolen, 1994). No �nite discretiza-tion of the state space can capture the behavior of such DRNs. We will demonstratesuch trajectories, explain their computational power, and show how that power al-lows them to go beyond DFAs. Note that in this chapter we are concerned withpractical demonstrations of DRN computing abilities. Theoretical considerations oftheir computational limits are considered in Chapter 9.2 Hierarchies of languages and machinesIn this section we brie
y diverge from DRNs to review computational hierarchies ofmachines and the tasks they can compute, as a basis for understanding the relativedi�culty of the tasks discussed in later sections.2.1 The Chomsky hierarchyThe simplest kind of languages are the regular languages (as described in earlierchapters). Chomsky pointed out that new, more powerful language classes wereneeded in order to model the essential properties of human languages [Chomsky,1956, 1959]. The hierarchy of language classes which he introduced has now becomethe cornerstone of formal language theory.definition: A (formal) language L is a (possibly in�nite) set of strings of symbolsdrawn from a �nite alphabet A.There are two standard ways to characterize a formal language. One way is tospecify a grammar (set of re-write rules) which generates it (i.e. produces all thestrings of the language, and no others); the other way is to specify an abstractmachine which recognizes it (i.e. tells whether any given string is in the languageor not). In the present context, it will be convenient to de�ne the four classes oflanguages that make up the Chomsky hierarchy | regular, context-free, context-sensitive and recursively enumerable { in terms of the classes of machines recognizingthem | which are, respectively, �nite state automata (DFA), push-down automata(PDA), linear bounded automata (LBA) and Turing machines (TM). Note howeverthat the traditional approach has been to de�ne each class of language in termsof the class of grammars generating it, and then to prove the equivalence of thecorresponding machine-based characterizations (see (Hopcroft and Ullman, 1979),for further details). 2



2.2 Regular and context-free languagesThe de�nition of a DFA was given in Chapter 7; a PDA is essentially a DFA whichis additionally able to push and pop symbols from an external stack. The powerof a PDA to go beyond a DFA derives from the unbounded stack which, unlikethe states of a DFA, is not constrained to a �nite size. Our notation is taken from(Hopcroft and Ullman, 1979).definition: A push-down automaton (PDA) is a system M = fQ;�;�; q0; z0; F; �g,where:Q is a �nite set of states;� is an alphabet, called the input alphabet ;� is an alphabet, called the stack alphabet ;q0 in Q is the initial state;z0 in � is a particular stack symbol, called the start symbol ;F � Q is the set of �nal states;� is a mapping from Q� (� [ f"g)� � to �nite subsets of Q� ��.The interpretation of � is as follows: if (q; 
) is an element of �(p; a; z) then thePDA can, on reading input a, move from state p to state q, popping z from thestack and pushing the symbols of the string 
 onto the stack. The empty string isdenoted ". If (q; 
) 2 �(p; "; z) then the PDA can move from state p to state q, popz and push 
, without reading any input. M is called a deterministic PDA if twoadditional conditions are satis�ed:(i) �(q; a; z) contains at most one element, for all a 2 � [ f"g,(ii) if �(q; "; z) is not empty, then �(q; a; z) is empty for all a 2 �.A string � is recognized by M if M, starting in state q0 with the single symbol z0on the stack, can read the symbols of � one at a time by some series of moves, and�nish in one of the designated �nal states, F .definition: A language which can be recognized by a PDA is called a context-freelanguage (CFL). A language which can be recognized by a deterministic PDA iscalled a deterministic context-free language.As an example, consider the language L = anbn, which consists of the strings ab,aabb, aaabbb, : : : for all n � 0. In this language, every string has exactly the samenumber of b's as a's. We cannot build a DFA to recognize L, because it wouldbe necessary to have a di�erent state for each value of n (which is impossible byde�nition, since the DFA only has a �nite number of states). However, a PDAcan be constructed which recognizes anbn by pushing symbols onto the stack as it\counts" the number of a's, and then popping those symbols from the stack one ata time as it checks to see that there are the same number of b's. Since the stackdepth is unbounded, the PDA is not limited to a �nite number of a's and b's.Virtually all computer languages are context-free. Natural languages have muchin common with CFLs (but are not quite the same). Examples of structures whichthe stack of a PDA can be used to process include embedded clauses in naturallanguage, nested loops in computer languages and balanced parentheses in formallanguages. 3



2.3 Context-sensitive and recursively enumerableIn order to de�ne the remaining two classes of the hierarchy, it is necessary tointroduce the Turing machine, which is essentially a DFA that is additionally ableto read and write to an external \tape".definition: A Turing machine is a system M = fQ;�;�; q0; B; F; �g, where:Q is a �nite set of states;� is the �nite set of allowable tape symbols,B is a special symbol in �, called the blank,�, a subset of � not including B, is the set of input symbols,q0 in Q is the initial state;F � Q is the set of �nal states;� is a mapping from Q� � to Q� �� fL; rg(� may, however, be unde�ned for some arguments).The following procedure is used to determine whether a given string � is acceptedby machine M. Initially, the string � is written on the left end of the tape onesymbol at a time. The rest of the tape (which extends in�nitely to the right) is�lled with blanks. The machine then performs a series of moves, governed by themapping �. At each step, if M is in state p and reads x from the tape, M willchange to state q, write y to the tape and move the tape to the left [resp. right] if�(p; x) = (q; y; L) [resp. (q; y;R)]. If the computation eventually halts in one of thedesignated �nal states, the string is accepted.definition: A linear bounded automaton (LBA) is a Turing machine which isrestricted to only writing on a portion of the tape whose length is bounded by somelinear function of the length of the input string.definition: A language which can be recognized by an LBA is called a context-sensitive language (CSL); a language which can be recognized by a Turing machineis called recursively enumerable.Turing machines are universal in the sense that any symbolic computation systemcan be emulated by a Turing machine, and vice-versa. The set of recursively enu-merable languages therefore includes any language which can be described by acomputable function.It can be shown that each class in the Chomsky hierarchy is properly containedin the next class. For example, the language of true Quanti�ed Boolean Formu-las is recursively enumerable but not context-sensitive (see (Hopcroft and Ullman,1979), section 13.4). An example of a language which is context-sensitive but notcontext-free is the language anbncn, consisting of the strings abc, aabbcc, aaabbbccc,etc. PDAs are not able to process this language because they cannot \re-use" in-formation once it has been popped o� the stack. Interestingly, if a second stackis added to a PDA, the resulting system acquires the full computing power of aTuring machine (because each stack can be used to simulate one semi-in�nite halfof the tape). Natural languages do occasionally make use of constructs requiringmore than a simple stack, but their use is rare; for example, we can say \John, Pauland Ringo played guitar, bass and drums, respectively".4



2.4 Learning and inductionThe remarkable thing about human language processing is our ability, once we have\learned" a language, to produce new utterances which are accepted and understoodby others, even though those exact utterances have never been written or spokenbefore. This process of language induction can be modeled with formal languagesusing formal prediction or recognition tasks.Prediction task:A learning system is presented with a number of training strings, all of which belongto the language. The system is then presented with a number of test strings (whichalso belong to the language) one symbol at a time, and must predict, at each step,what the next symbol in the sequence will be.Recognition task:A learning system is presented with a number of training strings | each stringlabeled to indicate whether or not it is in the language. The system is then presentedwith a number of test strings and must declare, for each of these strings, whetheror not it is in the language.Language induction depends on certain assumptions about the framework withinwhich the language is likely to be found. Suppose, for example, that a learningsystem is presented with the training strings anbn for 0 � n � 10, and asked toinduce a language from these data. It is of course possible to build a DFA (with22 states) which would accept exactly these 11 strings and no others. However, wemight be more impressed with a learning system which can generalize the patternof the input, and learn to accept new strings of the form anbn for values of n greaterthan 10. Note that this kind of generalization necessarily steps outside the DFAparadigm, since it involves adding additional states to the DFA. We will see inSections 3.2 and 3.4 that DRNs are indeed able to generalize in this way, for bothrecognition and prediction tasks. Therefore, with respect to generalization, DRNshave properties which go beyond the DFA framework.2.5 Alternative hierarchiesChomsky's hierarchy had substantial impact, particularly in the area of theoreticalcomputer science. The establishment of a correspondence between classes of lan-guages that can be expressed with a given syntax, and classes of machines expressedin terms of memory requirements, allows a deep understanding of these classes fromthe two di�erent perspectives.However, Chomsky's language hierarchy is not the only one that has been pro-posed, and linguists have argued that natural languages do not neatly �t into anyparticular class in the Chomsky hierarchy. Note in particular that the four classes ofmachine used to de�ne the Chomsky hierarchy have in common that they are essen-tially discrete or symbolic in nature, and are distinguished by the type of memoryresources available to them (no external memory, an external stack, a linear boundedtape, or an in�nite tape). Researchers have more recently begun to study languageclasses which correspond to dynamical systems (Moore, 1998). Dynamical systemsare not symbolic in nature, but continuous, and the limitation on their power is notnaturally de�ned in terms of external memory, but rather precision, as we shall seein the next section. 5



2.6 Performance limitationsThe remainder of this chapter will be devoted to a description of how DRNs canlearn to process context-free and context-sensitive languages. There is one caveatwe must mention �rst, namely the issue of robustness.Physically implemented computation devices do not completely live up to thecapabilities of idealized constructs such as PDAs or Turing machines. Strictlyspeaking, a digital computer with �nite memory is really a �nite state machine,and therefore resides at the lowest rung of the Chomsky hierarchy (for example,a four-gigabyte computer has 2235 possible states). However, because of the expo-nentially large number of states, it is more useful to think of a computer as if itwere implementing a Turing machine, but keeping in mind that it is constrained byperformance limitations. This typically means that it can be relied upon to performany computation perfectly, unless it is provided with input greater than a certaincritical size, in which case it will either produce a wrong answer, or halt with an\out of memory" or \stack over
ow" error message. This is known as catastrophicfailure.An analog computer such as a DRN is also subject to performance limitations| not because of �nite memory space but because of limited precision; a physicallyimplemented DRN is subject to noise, which causes tiny random 
uctuations in theactivation levels of the units. Rather than catastrophic failure, these 
uctuationswill typically produce a pattern of graceful degradation. This means that the DRNwill sometimes make mistakes, and that the probability of making a mistake grad-ually increases as the input gets longer and more complex, representing a soft limitrather than a hard one. Since DRNs rely on an in�nitesimally �ne subdivision oftheir state space in order to process non-regular languages, this process is suscep-tible to errors when noise is introduced into the system. In other words, althoughDRNs are capable of implementing non-regular languages, it has been shown thatthey are not able to do so robustly (Casey, 1995; Maass and Orponen, 1998). Wewill return to this point in section 3.2.3 DRNs and non-regular languages3.1 Augmenting DRNs with an external stackInspired by the formal description of a PDA, LBA or Turing machine as a DFAaugmented by a stack or tape, the early work in training DRNs on context-freelanguages involved similarly augmenting the DRN with an external stack or tape.DRNs have been shown to learn to operate the read, write and shift transitions fora Turing machine. (?).Further integration of the stack into the DRN is achieved in the Neural NetworkPushdown Automaton (NNPDA) which employs a continuous stack with di�eren-tiable dynamics. The network in the NNPDA can be trained to induce the statetransition rules and to use and manipulate the stack (Giles et al., 1990; Das et al.,1993; Sun et al., 1998). The NNPDA implements a state-to-state mappingSt+1 = Gs(St; Rt; It;Ws); (1)where S is the continuous state, R is what is available on the continuous stack,I is the input symbol (represented as a bit vector) and Ws is the weight matrix.Moreover, the NNPDA determines its next stack action byAt+1 = Ga(St; Rt; It;Wa); (2)where A is the stack operation on the current input symbol: push, pop or none,together with its length (utilizing the continuum of A) which corresponds to the6



size of the space for storing the symbol on the continuous stack. Wa is the weightmatrix for the action mapping. The in�nite memory required by the model can beseen from the stack-reading mapRt = Gr(A1; A2; :::; At; I1; I2; :::; It): (3)Hence, the R value depends on the entire history of stack operations and past inputs.NNPDAs have been shown to learn to recognize strings in a number of small CFLs(Sun et al., 1998).Zeng et al. [1994] present a DRN that uses discretization in its feedback links.The discretization automatically performs clustering (as understood in a completelyanalog network) to enforce stability. Furthermore the external stack is completelydiscrete. Using pseudo-gradient learning the network acquires stable representationsfor small CFLs from example sequences.The use of an in�nite stack obviates the need for unbounded precision to encoderecursive structure. It is even sometimes possible to identify a �nite (and stable)number of states (in the network) and combine these with the stack to extract asymbolic PDA from a trained NNPDA (Sun et al., 1998; Zeng et al., 1994).3.2 DRNs without an external stackIn the abovementioned studies, the DRN itself is only required to play the samerole within the overall system that is played by the DFA component of a PDA,LBA or Turing machine. It seems natural to ask: could a DRN learn to performthe task of the whole system, rather than just the DFA part of it? Because it hasbeen proven that a DRN cannot robustly process non-regular languages, is it alsothe case that the learning and inductive bias of a DRN must be characteristic ofregular languages?To put it another way, any attempt by a DRN to process a non-regular languagemust ultimately be non-robust in the sense that noise injected into the system willcause it to make mistakes when it tries to process deeply embedded structures. Buthow important is robustness? Linguists have argued persuasively that the languagesinvented or induced by humans are inherently non-regular, notwithstanding the factthat humans also makemistakes while processing these languages, particularly whendeeply nested structures are involved. That is, humans have a competence for non-regular languages, even though their performance on those languages is less thanperfect (?)1. Can the same argument be made for DRNs? What evidence might weconsider to test the claim that DRNs are learning non-regular languages? First, wemight ask whether a DRN trained on sequences from a CFL is able to generalize toother sequences from the same CFL (e.g., more deeply nested structures). Second,it would be telling if a DRN trained on sequences from a regular language showedsome bias towards inducing a non-regular language.Over the past ten years, evidence has been accumulating for both of these aspectsof DRN learning. There are now several studies showing that Simple Recurrent Net-works (SRNs; (Elman, 1990)) trained to predict the next word in sentence process-ing tasks, are able to generalize levels of center embedding [Elman, 1991 | see alsoChristiansen and Chater, 1999 and Elman, 1993]. The Recursive Auto-AssociativeMemory model (RAAM) can also learn tree structures for simple context-free lan-guages, with some systematic generalization to unseen cases (Pollack, 1987; Pollack,1990; Blank et al., 1992; Kwasny and Kalman, 1995).In addressing the second point, it is important to consider the type of evidencethat would be accepted as showing that a DRN had induced either a regular or anon-regular language. As mentioned in section 8.1, once a DRN has been trained,1This idea really goes back to the lange/parole distinction of (Saussure, 1915).7



it is possible to extract from it a DFA which approximates the behavior of the DRN(see Chapters 7 and 12). The approximation is based on functional equivalence ofregions in state space. In some cases, the DRN induces a regular language which isexactly modeled by the DFA. In others, the DRN induces a non-regular language,which cannot be completely modeled by any DFA. An explanation for this seemingcontradiction is found by analyzing the networks at a higher resolution, allowingthem to be viewed as in�nite state systems (Kolen, 1994; Pollack, 1991; Crutch�eldand Young, 1991). Extraction methods then produce a series of non-deterministic�nite-state machines, modeling the DRN's behavior at successively more re�nedlevels of detail. Indeed, studies have shown that neural networks sometimes preferto induce a non-regular language, even when presented with data which could bedescribed by a simple DFA (Blair and Pollack, 1997).The approximation of a DFA by a DRN can be visualized in terms of discreteregions of the DRN state space corresponding to the states of the DFA. When aDRN computes a non-regular language, such visualization into regions of equivalentfunctionality is no longer appropriate. In the next subsection, we show how thebehavior of a DRN trained on a simple CFL can be understood in terms of dynamicalsystems theory, and show how such analysis allows visualization of its performance.3.3 Representing counters in recurrent hidden unitsIn this section, we show how simple counting tasks, such as predicting the nextsymbol from the language anbn, can be performed by a DRN without an externalstack. The simulations reviewed in this section can be seen as a possible mechanismby which the studies referred to above achieve their generalization results.The network is presented with a sequence of strings from the language anbn andmust predict, at each time step, the next symbol in the sequence. For example,suppose part of the input sequence is aaaaabbbbbaabbaaabbb : : : (a5b5a2b2a3b3). Wedo not expect the network to correctly predict the �rst b in the sub-sequence a5b5(since the number of a's is arbitrary) but we do expect it to successfully predictthe next four b's, and in particular to predict the following a (which is the initialsymbol of the next sub-sequence). Wiles and Elman [1995] demonstrated that SRNswith two inputs, two fully recurrent hidden units and two outputs (using the logistictransfer function) can be trained to perform this prediction task by backpropagationthrough time (BPTT; (Williams and Zipser, 1988)).The studies reviewed here use one-shot encodings for their inputs and outputs(where one unit is \on" and all the others are \o�"). For anbn the a input isrepresented by (1; 0), the b input by (0; 1). The most frequently found solution usesthe natural property of recurrent hidden units with self weights, to converge to anattractor or diverge to a limit cycle. By matching the rate of convergence in onerecurrent hidden unit with the rate of divergence in another, a DRN can \count"up and down (Rodriguez et al., 1999).To elaborate on how the network accomplishes this task we introduce someconcepts from dynamical systems theory. If we ignore (for the moment) somecomplications introduced by non-linear output functions, a DRN can be seen asa discrete-time dynamical system F . The activation vector X 2 Rn of the n statevariables (activation of n recurrent hidden units) changes over time as follows:Xt+1 = F (Xt + It); (4)where It is the externally provided input pattern at time t. In our case there aretwo (non-linear) automorphismsFa and Fb (corresponding to inputs a and b). Sincethese automorphisms can be applied in any order (determined by the input string)it is useful to think of them as comprising an Iterated Function System [Barnsley,1993 { see also Chapter 5]. 8



A �xed point of F is a state ~X 2 Rn for which ~X = F ~X. The standard tech-nique of linearization provides a convenient way of determining the characteristicproperties of a non-linear system in the neighborhood of a �xed point | as eitherattracting or repelling, with di�ering periodicity, in di�erent directions, etc. TheJacobian (partial derivative matrix) of the (non-linear) state transformation allowsus to analyze the system around �xed points as if it were linear. As an example,the Jacobian matrix for two state variables (x; y) isJ(xt; yt) = 24 @xt+1@xt @xt+1@yt@yt+1@xt @yt+1@yt 35 : (5)An eigenvalue of a linear map F is a scalar � and an eigenvector of F is a vectorv such that Fv = �v. The eigenvalue expresses the rate of contraction or expansionof F along the principal dimension given by the corresponding eigenvector. Whenstudied close to the �xed points of the system, the Jacobian has eigenvalues andeigenvectors which approximate the way the non-linear system changes over time(Rodriguez et al., 1999).The non-linearities also pose a problem for determining the location of the �xedpoints. By �rst estimating the locations of �xed points (by iteration) it is then pos-sible to use standard techniques for estimating the roots of the system of equations(Rodriguez et al., 1999). Consider, for example, a 2-dimensional fully recurrentstate space using the logistic transfer function f(x) = 1=(1 + exp�x):xt+1 = f(xtwxx + ytwxy +wx�) (6)yt+1 = f(xtwyx + ytwyy +wy�) (7)where wxx is the self weight of x, wyy is the self weight of y, wxy is the weight onthe connection from y to x, wyx is the weight on the connection from x to y, andwx� and wy� are the biases for x and y, respectively. The �xed point (~x; ~y) (whichis not changing over time) can thus be determined by combining~y = � ~xwxx +wx� + ln(� ~x�1~x )wxy (8)and ~x = � ~ywyy + wy� + ln(� ~y�1~y )wyx : (9)The combination can be �ne-tuned, for example, by Newton's method [cf. Tino etal., 1995].The trajectory of activations in the recurrent hidden unit space of a trainednetwork, as it processes the sequence a8b8, is shown in Figure 1(a) . As the a'sare presented, the state converges towards an attracting �xed point at (0:44; 0:03).On presentation of the �rst b, the state shifts to the neighborhood of a repelling�xed point at (0:05; 0:41). Successive b's then take the state steadily away fromthe repeller, in such a way that the �nal b pushes it over the boundary from the\predict b" region to the \predict a" region (implemented by the network's outputweights). Figure 1(b) shows the linearizations (around their �xed points) of thetransformations de�ned by the Fa map and the Fb map. Note that in Figure 1(b) thelargest (absolute) eigenvalues of these linearizations are approximately reciprocal(�0:775� �1:36 � 1:0). Basically this means that the rate at which Fa convergestowards its (attracting) �xed point corresponds to the rate at which Fb divergesfrom its (repelling) �xed point.The negative sign of the eigenvalue indicates that the activations oscillate aroundeach of the �xed points. Positive eigenvalues correspond to a monotonic solution, for9
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2(a) State trajectory. (b) Eigenvectors.Figure 1: A trajectory in the state space of a �rst order SRN with two recurrenthidden units, processing a8b8. (a) Each successive a in the sequence a1 to a8 causesan oscillation towards the Fa �xed point at (.44,.03). On presentation of the �rst b,the state jumps to a point governed by Fb, and then with each successive b divergesfrom the Fb �xed point at (.05,.41), oscillating outwards. The rate of divergenceof the state under Fb matches the rate of convergence under Fa, so that the last bin the sequence (in this case b8) crosses the hyperplane de�ned by the output unit(shown as a dotted line). The DRN then predicts correctly that the next input willbe an a. (b) The eigenvectors corresponding to Fa and Fb in (a).which the activations always remain on the same side of the �xed point. Networkssometimes converge on a monotonic solution, but these networks typically do notgeneralize as well as the alternating, oscillatory solutions. If a �xed point has anabsolute eigenvalue below 1 for one of its eigenvectors, it is attracting along theprincipal dimension given by the associated eigenvector. Similarly, if the absoluteeigenvalue is above 1, the �xed point repels.The potential of the architecture and oscillatory dynamics (but using a linearstate transformation) has been investigated using hand-crafted (analytically de-rived) networks (Holldobler et al., 1997). Using such networks, it has been shownthat �nely tuned SRNs can correctly predict sequences of arbitrary length from theanbn language, given arbitrary precision.We take such generalization results, combined with the dynamical systems anal-yses that show matching converging and diverging trajectories, as evidence that thenetwork's competence should be properly characterized as learning a non-regularlanguage.3.4 Learning, stability and generalization for anbnThe previous section outlined a typical solution for representation of a CFL by aDRN. In this section, we continue our analysis of DRN computation by reviewingthe learning and stability of DRNs trained on sequences from CFLs.SRNs have been successfully trained on the anbn prediction task by BPTT usingan incremental learning approach (Wiles and Elman, 1995). Even though theywere only trained on strings of length n = 1 to n = 11, many of them successfullygeneralized to correctly predict strings of length n = 12 and n = 13. One networkwas observed to generalize to n = 18. Had the network been constructing speci�cstates in a DFA for each string in the training data of length n, no states would10



have been constructed for strings longer than those in the training set, and hence,the generalization observed would not have been possible.However, the task of the network in learning to march the converging and di-verging oscillating trajectories is not an easy one for BPTT. It has been found thatSRNs encounter instabilities as they learn this task by BPTT, repeatedly losing thesolution, then �nding it again (Tonkes et al., 1998; Bod�en et al., 1999). The reasonfor the problem lies in the shape of the search space.For the most frequently found solution to anbn in an SRN with two recurrentunits, the presentation of a particular input largely results in oscillation along asingle dimension. For the other input condition the other dimension is similarlyused. Basically this means that at any time one recurrent unit is oscillating, whilethe other is passive (Bod�en et al., 1999).If we consider a single recurrent hidden unit (with a bias) it is possible to identifycombinations of the self weight and the bias which lead to oscillating behavior. Ascan be seen in Figure 2(a) | which illustrates the number of oscillations that canbe �tted in before a �xed point or limit cycle is reached | the self weight and biasneed to be precisely coordinated. If the weights (self weight and bias) are positionedon the outside of the ridge in Figure 2(a), convergent oscillations (as found for Fa)appear. The weight con�gurations on the inside give rise to divergent behavior(as found for Fb). Thus the ridge corresponds to a bifurcation boundary betweenweights that allow a �xed point to be attracting and those that make the same�xed point repelling. The bifurcation occurs when the eigenvalue (of the Jacobian)is exactly -1 (for which the system is non hyperbolic). An additional complication isthat to achieve a su�cient number of oscillations, weights must be located close tothe boundary (one recurrent unit on the inside, one on the outside). When weightscross this boundary, the system's behavior around the �xed point changes radically,from attracting to repelling or vice versa (Bod�en et al., 1999). If the weights areinitialized to small values (close to the origin in Figure 2(a)) learning must takethe system (weights of one recurrent hidden unit) through at least this particularbifurcation.The instability of gradient learning can thus be explained by the proximitybetween the optimal weights and the bifurcation boundary. Figure 2(b) illustratestypical weight changes during a training session. Three phases can be discerned:(1) weights smoothly move closer to solution space, (2) the system's behavior variesradically when the weights are close to the bifurcation boundary, indirectly a�ectingweight changes which start 
uctuating heavily, (3) a large weight change moves thesystem out of solution space. The error gradient tends to be complex in the vicinityof the bifurcation border; the magnitudes of the resulting gradients make gradientbased learning inappropriate and unreliable (Bod�en et al., 1999).One way to combat these instabilities is to use an evolutionary hillclimbingalgorithm, where the weights are only updated if a network with new weights isfound to predict a series of test strings better than the previous network (Tonkeset al., 1998). This algorithm was able to learn the task stably, and also provided astronger demonstration of generalization. During training, the network sometimesjumped several levels, generalizing to strings up to 14 symbols longer than it hadpreviously encountered (n=42 to n=49).3.5 Learning the context-sensitive language anbncnThe previous subsection described how a �rst order network with two recurrenthidden units could learn to predict the CFL anbn. We might expect that a secondorder network, or a network with more recurrent hidden units, might be able topredict more complex languages such as the context-sensitive language anbncn. Ithas been shown that a �rst order SRN with three recurrent hidden units can learn11
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communication between the three autonomous systems. Hence, the inductive biasof DRNs, revealed through training of the networks, explores dynamics for predict-ing a CFL which extend naturally to at least one CSL | in sharp contrast withwhat is implied by the Chomsky hierarchy [Bod�en and Wiles, in press].Other context-sensitive language tasks have been implemented in hand-craftedDRNs, without addressing learning issues (Steijvers and Gr�unwald, 1996).4 Generalization and inductive biasSavitch (Savitch, 1989) argues that an essentially in�nite language can be under-stood intuitively as a set of strings which have a simpler description as a subset ofan in�nite language, compared to their description as a �nite set. For example, con-sider the set of strings containing an odd number of a's, with at most 1010 symbols.The DFA that would recognize just these strings and no others would be �nite, butextremely large. By contrast, the (in�nite) set of all strings with an odd number ofa's can be described by a much simpler DFA with just two states.Extending Savitch's idea, we introduce the term essentially context-free to de-scribe data which have a simpler description as part of a context-free language,rather than as part of a regular language. Of course the notion of \simplicity"is not absolute, but depends on the framework within which the description is tobe framed. Gold's theorem (Gold, 1967) says that CFLs cannot be learned frompositive examples categorically; however, given structural assumptions, learning aPDA can be reduced to learning a DFA.Studies of learning enable us to expose the inductive bias of a particular class ofmachines. We have considered such evidence in this chapter. Two frameworks maybe equivalent with respect to what they can represent, and yet di�er with respectto learning and generalization. With �nite precision, any trained DRN may beanalyzed as a DFA, albeit with a huge number of states. The network that learnedanbn to n = 49 could be described using 100 states in a DFA description. Alter-natively, it could be represented as a dynamical system emulation of a CFL, usingjust four eigenvectors in which the convergence rate into an attractor is matchedby the divergence rate from a corresponding repeller.The DFA analysis does not account for the fact that the language induced bythe DRN may be described much more simply as a �nite approximation to a CFLand generalizes in a way which is best described in terms of context-free languagesrather than regular ones.Symbolic and dynamical systems may naturally induce di�erent languages fromthe same set of training strings. The \natural" class of languages induced by DRNsmay even be some completely new class which does not correspond to any particularrung of the Chomsky hierarchy (see Chapter 15).5 ConclusionThis chapter examined the abilities of DRNs to go beyond the representational ca-pacities of �nite-state automata. In particular, it described how networks with realvalued transfer functions in their hidden units can represent and learn context-freelanguages by using the transient dynamics around the �xed points in the recurrenthidden unit activation space.Analyzing DRNs as dynamical systems in terms of attractors gives a very dif-ferent perspective than analyzing them in terms of �nite regions. The simulationsreviewed in this chapter show that one cannot deduce generalization properties inlearning by considering only the classi�cation of the architecture in terms of the14
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