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Abstract

Recurrent neural network pro cessing of reg-

ular languages is reasonably well under-

sto o d. Recent work has examined the

less familiar question of context-free lan-

guages. Previous results regarding the lan-

guage a

n

b

n

suggest that while it is p ossi-

ble for a small recurrent network to pro-

cess context-free languages, learning them

is di�cult. This pap er considers the rea-

sons underlying this di�culty by consider-

ing the relationship b etween the dynamics of

the network and weightspace. We are able

to show that the dynamics required for the

solution lie in a region of weightspace close

to a bifurcation p oint where small changes in

weights may result in radically di�erent net-

work b ehaviour. Furthermore, we show that

the error gradient information in this region

is highly irregular. We conclude that any

gradient-based learning metho d will exp eri-

ence di�culty in learning the language due

to the nature of the space, and that a more

promising approach to improving learning

p erformance may b e to make weight changes

in a non-indep endent manner.

1 Intro duction

Recurrent neural networks (RNN) can b e

trained to recognize regular languages from

examples (Cleeremans et al., 1989; Elman,

1990; Pollack, 1991; Giles et al., 1992).

The op eration of such RNNs has commonly

b een understo o d in terms of �nite-state au-

tomata (FSA). States organize in activation

space as distinct clusters and weights estab-

lish transformations b etween them re
ecting

the op eration of the asso ciated FSA (Casey,

1996). It has b een argued that this dis-

cretization is misleading and that the op era-

tion of RNNs is b etter understo o d in terms

of iterated function systems (Kolen, 1994)

or, more generally, continuous dynamical

systems (Ro driguez et al., 1999).

This work considers RNNs trained with

a context-free language (CFL). CFLs can-

not b e pro cessed with FSA and thus any

solution requires a di�erent understanding

of RNN dynamics. The conventional ex-

tension is a push-down automaton (PDA)

which adds a stack and a counting mecha-

nism to the FSA. Previous work has demon-

strated that an RNN, can b e successfully

trained on a simple CFL, without making

use of an explicit counter or stack. Instead,

hidden units develop oscillating dynamics

which provide means for a p otentially in-

�nite numb er of states (Wiles and Elman,

1995; Ro driguez et al., 1999; Tonkes and

Wiles, in press). However, learning do es not

always result in a solution and when a solu-

tion is found the network is prone to losing

it with further training (Tonkes and Wiles,

in press).

This pap er extends previous work by in-

vestigating two particular asp ects of net-

work p erformance in light of simulations us-

ing the context-free language a

n

b

n

:

� What constitutes the learned (or learn-

able) solution? What are the con-

straints, variations and limits of the

network learning?

� Why is learning di�cult and unstable?

2 Exp eriments

All networks consisted of 2 input units (one

for each token), 2 hidden units and 2 output

units (one for each token). The network was

fully connected and the hidden units were

recurrent, as shown in Figure 1.

A variety of networks were trained using

backpropagation through time (BPTT) on

the context-free language a

n

b

n

, e.g. aaabbb ,

ab , aaaaaabbbbbb . The language was pre-

sented as a continuous stream of strings with

varying lengths up to n = 10. The target

output was the next token in the string or,

at the last token, the �rst token of the next

string. Since strings were presented in ran-

dom order, this prediction task (originally
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Figure 1: The network used in all exp eri-

ments. Each token has its designated input

and output unit. The hidden units are re-

current.

used by Elman, 1990) is non-deterministic.

However, the network can develop mech-

anisms for deterministically predicting the

next token whenever the b token is pre-

sented. The network weights were up dated

after each completely presented string. Gen-

eralization was tested up to n = 12. Gen-

eralization requires that the network has es-

tablished a means for counting the numb er

of a 's to predict the same numb er of b 's. The

two tokens, a and b , were represented with

[1 0] and [0 1] resp ectively.

Each network was unique and had either

di�erent initial weights or was con�gured

with di�erent learning parameters including

learning rate (�xed at 0.3 (FLR) or an adap-

tive strategy (ALR) describ ed by Lawrence

et al., 1998), numb er of activation copies

saved for BPTT (ranging from 5 to 12), tar-

get co des (binary (BT): [1 0][0 1] or soft

(ST): [0.9 0.1][0.1 0.9]). These variations al-

lowed us to study the impact of prior con-

straints. The logistic output function was

used for all networks. No momentum was

used.

The p ercentage of networks �nding a so-

lution (correctly handling all strings up to

n = 12) within the presentation of 20000

strings was 60% for the optimal parameter

settings and around 20% on average. The

success rate was considerably worse when

the numb er of activation copies for BPTT

was kept low (5 or b elow). The data dis-

tribution was biased towards shorter strings

with the highest frequency for n = 2. Some

alternative learning and data presentation

strategies { a smaller learning rate for the

hidden layer weights (SLRH), a presenta-

tion scheme where longer strings were in-

tro duced after some learning p erio d (StS),

and a presentation scheme which only con-

tained strings with maximum length equal

to the level of BPTT unfolding (ShS) were

Con�g.: BPTT unfolding:

5 6 7 8 9 10 11 12

BT/FLR 9 13 38 15 23 21 34 12

ST/FLR 0 4 0 9 19 53 36 6

BT/ALR 0 0 0 2 23 11 23 0

ST/ALR 0 0 0 6 0 13 6 0

SLRH 15

StS 28

ShS 0 6 28 60 43 21

Table 1: Success rates (p ercentage) for net-

work learning with di�erent con�gurations.

Each con�guration was tested with a p opu-

lation of 47 networks.

tested, but demonstrated no signi�cant p er-

formance advantage. Table 1 summarizes

the results.

3 Solution

Ab out 200 successful weightsets (from dif-

ferent networks) were saved for further anal-

ysis. All successfully generalizing networks

made use of oscillating hidden units to keep

track of the level of emb edding. Cluster

analysis (in which each weight was com-

pared to all other weights in the same p o-

sition) revealed eight ma jor clusters. As it

turned out, these clusters corresp onded to

the eight symmetries of the dihedral group

acting on weight-space. Consequently, each

network was transformed to a canonical

form describ ed b elow.

The main solution, which has b een de-

scrib ed in previous work by Wiles and El-

man (1995), relies on one hidden unit (HU1

in the canonical representation) to oscillate

in synchrony with presentation of the a to-

ken and the other hidden unit (HU2) to os-

cillate in synchrony with the b token. The

�rst hidden unit implements a 2-p erio dic os-

cillator, which slowly converges to a �xed

p oint in activation space. The second hid-

den unit implements a 2-p erio dic oscilla-

tor, which diverges from an unstable �xed

p oint to a �xed cycle in activation space.

The numb er of oscillations p erformed by

the �rst hidden unit e�ectively determines

the starting p oint and the stepsize for the

second oscillation. The second hidden unit

approaches a constant threshold value (an

activation which basically marks the end

of the string) from di�erent starting p oints

and with di�erent stepsizes. Figure 2 shows

a hidden activation tra jectory and decision

thresholds of the output units for a standard

solution in canonical form.

4 Analysis

Observation of the hidden unit activations

reveals the dynamics of the network. During

continuous presentation of a single token,

most change o ccurs in one hidden unit, and
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Figure 2: A typical hidden activation tra jec-

tory for pro cessing the string aaaaaabbbbbb

( n = 6, starting p oint [0.5 0.5]). The line

forms the output hyp erplane. Note when

the last b is presented the activation ends up

in the \predicting a " region of the decision

thresholds (at 0.5 for the logistic function)

implemented by the output units.

the other remains largely inactive. Thus,

we will analyse the network b ehaviour by

considering the simpli�ed case of each hid-

den unit in isolation with only a bias and

a selfweight. If we consider this single unit

under constant input, then we can subsume

any inputs under the bias term. However, it

should b e noted that some communication

b etween the hidden units is necessary to set

the starting p oint, x

0

, for each phase of pro-

cessing the continuous stream of strings.

4.1 Dynamical Behaviour

There are four basic b ehaviours exhibited

by the single recurrent unit (H•olldobler et

al., 1997). We assume the logistic activa-

tion function resulting in the iterated map,

f ( x ) = 1 = (1 + e

� w x � b

) (selfweight w and

bias b ) which has at most 3 �xed p oints

(where f ( x ) = x ). Let x

i

b e the �xed p oint

which has the largest output gradient f

0

( x

i

).

1. The selfweight is p ositive.

(a) If 0 < f

0

( x

i

) < 1, there is one at-

tractive �xed p oint to which the

unit output eventually converges.

(b) If f

0

( x

i

) > 1, then two attractors

and one rep eller result. The out-

come dep ends on the initial p oint,

x

0

.

2. The selfweight is negative.

(a) If � 1 < f

0

( x

i

) < 0, there is one

attractive �xed p oint to which the

unit output converges by damp ed

oscillations.

(b) If f

0

( x

i

) < � 1, then the activa-

tions converge towards a �xed 2-

p erio dic cycle.

The standard solution outlined earlier

makes exclusive use of b ehaviour 2(a) in

HU1 and b ehaviour 2(b) in HU2. Solu-

tions exist using b ehaviours 1(a) and 1(b)

(H•olldobler et al., 1997) but such networks

have not b een observed to learn and success-

fully generalize as a result of training with

BPTT. To illustrate the di�culties for the

learning algorithm we fo cus on b ehaviours

2(a) and 2(b).

To pro cess longer strings, the network

must �t as many oscillations as p ossible

into the hidden unit space b efore converg-

ing to an attractive p oint or cycle. Fig-

ure 3 depicts the numb er of iterations, k , of

the single hidden unit iterated map b efore

j f

k � t

( x ) � f

k

( x ) j < �; � = 0 : 001 for vary-

ing bias and selfweight when x

0

= 0 : 5. The

�gure shows an ellipsoidal ridge where many

oscillations can b e made b efore convergence.

Imp ortantly, this ridge also forms a b order

b etween b ehaviours 2(a) (outside) and 2(b)

(inside) ab ove. Crossing the b order results

in a bifurcation in the dynamics of the net-

work and a radically di�erent outcome.
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Figure 3: Numb er of oscillations b efore con-

vergence for a self-recurrent single hidden

unit. The numb er of oscillations was cut o�

at 50 for clearer visualization. Behaviour

2(a) is found outside the ridge, b ehaviour

2(b) is found inside the ridge.

In terms of the network's solution for a

n

b

n

for n � 12, HU1 (which oscillates in syn-

chrony with a input) must b e close to this

ridge and on the outside for a input, and

further from it for b input. Conversely, HU2

must b e close to the ridge and on the in-

side for b input, and further from it for a

input. The external signals from the a and

b inputs are able to facilitate this change in



oscillation p erformance by shifting the net-

work along the bias axis.

1

Due to the na-

ture of the surface in �gure 3 the transla-

tion of the e�ective bias must b e p erformed

with substantial precision. The unit must

b e moved to a region closer to the b order

to achieve the required oscillation p erfor-

mance, but not so far as to send it over the

b order which would result in crossing the bi-

furcation b oundary of the unit's dynamics.

The situation is further complicated when

we consider the recurrent connections b e-

tween the hidden units. These connections

allow the network �ner grained control over

the transition b etween the a and b phases

by setting the starting conditions for HU2.

Figure 4 shows where the hidden units of

successful networks fall in terms of the land-

scap e in �gure 3. The absolute weight val-

ues have b een mo di�ed to incorp orate the

in
uence of the corresp onding input weight

for the two hidden units relative to the two

input cases ( a input for HU1, b for HU2).

The weights for the �rst hidden unit are

found outside the bifurcation b order and the

weights for the second hidden unit are found

inside the b order. The �gure is an idealiza-

tion of the condition where HU1 and HU2

are indep endent and outliers in the �gure

are weight sets that violate this assumption.

5 The Error Surface and

Learning

It is clear that the representation requires

some degree of precision, but what makes

learning so di�cult and unstable?

Weight changes were traced during learn-

ing for a numb er of trials. Again the net-

work was analysed by considering two sep-

arate self recurrent units, with their re-

sp ective biases accounting for the appro-

priate input condition. Typically, the net-

work weights evolve in three main phases.

Initially, weights smo othly migrate towards

the region of go o d oscillation p erformance.

When the weights reach a region close to the

bifurcation b order, up dates b ecome highly

irregular and weights tend to 
uctuate. Fi-

nally, at some p oint the weights are changed

to such a degree that the network moves out

of the desirable regions. In all the stud-

ied cases, large concurrent changes in the

bias and the input weight caused the prob-

lem. The selfweight app eared reasonably

stable. The same b ehaviour was observed

for runs when the BPTT unfolding mem-

ory was kept ab ove 8. For networks trained

1

Recall that under constant input it is safe to

subsume the input values under the bias term.

-14 -12 -10 -8 -6 -4 -2 0
-8

-6

-4

-2

0

2

4

6

8

10

Figure 4: Plot of weights for the two hid-

den units combined with a contour plot for

the oscillation p erformance. Weights for the

�rst hidden unit are found outside the bi-

furcation b order. The weights for the sec-

ond unit are found within. Weight values

are calculated on the basis of networks in

canonical form: the selfweight for each hid-

den unit is unchanged, the bias is the sum of

the original bias plus the input weight from

the active unit (the a input for HU1, the b

input for HU2).

with more copies (up to 12) the network

managed to stay in the proximity of solu-

tion space longer. For networks trained with

fewer copies, the second phase showed more

consistent weight changes but found solu-

tions less frequently.

The error that the learning algorithm

minimizes is based on the di�erence b etween

the presented strings and what is predicted

by the network. Since weights are up dated

after each presented string and since strings

of di�erent lengths imp ose di�erent require-

ments on the weight sets, the error may


uctuate as a result of presenting consecu-

tive strings of dramatically varying lengths.

However, in a separate analysis the observed

weight changes did not correlate with di�er-

ence in length for consecutive strings.

To investigate the nature of the error sur-

face, we considered the error gradient com-

puted by BPTT for a family of weights. To

re
ect the unstable region in weightspace

around the solution, weights were taken

from a successfully generalizing network.

We then considered for each hidden unit sep-

arately, the error gradient for varying val-

ues of selfweight and (e�ective) bias. To en-

sure that any p ossible in
uence from string

length did not a�ect the result, the error was

calculated on the basis of the entire range

of strings in the training set ( n = 1 :: 10). A
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Figure 5: Error gradients for the second hid-

den bias in a successful network when the

selfweight and bias of the second hidden unit

are varied. In the region of interest, the er-

ror gradient is extremely unstable.

representative sample of the gradients can

b e seen in Figure 5. The gradients indi-

cate that the error surface is littered with

deep narrow p otholes (in terms of b oth mag-

nitude and direction) close to the bifurca-

tion b order. Thus, if the weight changes are

prop ortional to the magnitude of the gradi-

ent (as in backpropagation) extreme weight

changes o ccur. We also noted by comput-

ing gradients for di�erent sets of strings that

the complexity of the surface is higher when

longer strings are used. This di�erence may

b e a result of the proximity of the solution

to the bifurcation b order.

A more sp eci�c reason for the instabil-

ity can b e found in the recurrent weight

from the �rst hidden unit to the second.

This connection is largely resp onsible for the

transition b etween the a phase and the b

phase. A correlation analysis of the set of

successful networks revealed a strong p osi-

tive relationship b etween the weight values

found on the connection from the a input

unit to HU1 and on the connection from

HU1 to HU2 and, negatively, from HU2 to

HU1. By studies of weight changes and ex-

p erimentation we found that by only slightly

changing the weight from the �rst to the sec-

ond hidden unit the starting conditions for

the second oscillation were greatly a�ected.

We traced the e�ect of learning signals on a

successfully generalizing network in the pro-

p osed canonical form. The impact of the

learning signal a�ects mainly the stepsize,

not the actual starting p oint for the second

oscillation. By only adjusting the weight on

the connection from the �rst hidden unit

to the second the oscillation stepsize (not

the starting p oint) for the second hidden

unit was a�ected. A p ositive change led

to smaller oscillations for the o dd-numb ered

strings, and larger for the even-numb ered.

A negative change led to the opp osite. The

observation is related to the correlation we

found. In fact, by manually adjusting these

three weights according to their relationship

(a p ositive a Input-HU1, requires a p ositive

HU1-HU2 weight and a negative HU2-HU1

weight, and vice versa) the learning insta-

bility was greatly reduced in a test network.

6 Conclusions

Compared to regular languages, context-free

languages put radically di�erent require-

ments on recurrent neural networks. It is no

longer su�cient to supp ort representation

of a �nite set of states in which all inputs

can b e group ed. Instead mechanisms for

supp orting representation of in�nitely many

states are required. Classical systems and

some neural network systems resort to exter-

nal counters and stacks. This work investi-

gates a learning approach which requires no

such manually designed mo dules. Instead a

simple recurrent neural network establishes

oscillating dynamics which have the p oten-

tial to represent and pro cess in�nite states.

By extensive exp erimentation we have

shown that, empirically, all successfully gen-

eralizing networks implement essentially the

same solution. Furthermore, we were able

to demonstrate that the di�culties exp e-

rienced by BPTT in �nding and keeping

this solution were largely consistent across a

wide variety of training conditions. We ob-

served that p erformance deteriorated when

we only unfolded the network for a few time

steps. Optimal p erformance was achieved

when we unfolded the network for ab out as

many time steps as there were levels of em-

b edding. It seems reasonable to b elieve that

BPTT can only �nd the oscillating solution

when the network is su�ciently unfolded.

Thus, a simple recurrent network as origi-

nally employed by Elman (1990) should not

b e capable of learning the oscillating solu-

tion for predicting a

n

b

n

without additional

constraints.

The oscillating dynamics found by all gen-

eralizing networks can only b e found in cer-

tain weight regions. One way of understand-

ing these weight regions has b een to consider

the numb er of oscillations by the decoupled

recurrent units b efore convergence. For the

logistic function the map distinguishes b e-

tween convergent and divergent oscillatory

b ehaviour by an in�nitely thin b order. The

standard solution requires that one hidden

unit employs convergent b ehaviour and that



the other employs matching divergent b e-

haviour. During learning the network dy-

namics undergo a bifurcation when the b or-

der is crossed, making gradient-based learn-

ing di�cult. The network output b ecomes

radically di�erent which greatly a�ects the

error when weights cross the b order. In ad-

dition, we have shown that the error land-

scap e, which controls the network weight

changes, is extremely complex (steep and ir-

regular) close to the bifurcation b order. The

oscillation map also demonstrates that the

desired dynamics are only found close to the

b order.

The problem with learning then, do es not

app ear to b e of �nding a b etter learning

algorithm that works in the same weight

space. Figure 5 highlights the complex

nature of the error surface on which, it

would app ear, any gradient based metho d

seems likely to exp erience di�culty. A more

promising approach, and one which we are

currently investigating, is to consider an al-

ternative search space. This study provides

the basis for developing a learning scheme

which takes into account the observed de-

p endencies b etween critical weights resp on-

sible for the unstable learning dynamics.
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