
Inductive Bias in Context-Free Language Learning

Brad Tonkes� and Alan Blair� and Janet Wiles�y

�Department of Computer Science and Electrical Engineering
ySchool of Psychology

University of Queensland

fbtonkes,blair,janetwg@it.uq.edu.au

ABSTRACT

Recurrent neural networks are capable of learning context-free tasks, however learning perfor-
mance is unsatisfactory. We investigate the e�ect of biasing learning towards �nding a solution
to a context-free prediction task. The �rst series of simulations �xes various sets of weights of the
network to values found in a successful network, limiting the search space of the backpropagation
through time learning algorithm. We �nd that �xing similar sets of weights can have very
di�erent e�ects on learning performance.

The second series of simulations employs an evolutionary hill-climbing algorithm with an
error measure that more closely resembles the performance measure. We �nd that under these
conditions, the network �nds di�erent solutions to those found by backpropagation, and is even
biased towards �nding these solutions. An unexpected result is that the hill-climbing algorithm
is capable of generalisation. The two simulations serve to highlight that seemingly similar biases
can have opposite e�ects on learning.

1. Introduction

While a large body of research has focused on
the relationship between recurrent neural networks
(RNNs) and deterministic �nite automata (DFA)
(see for example [2, 4]), recent results have shown
RNNs capable of learning context-free languages
[5, 7] and have suggested that RNNs may have
a bias towards inducing non-regular languages [1].
This result gives us a timely warning that when we
consider language induction, we should remember
the types of biases that are inherent in the learning
situation. The induced language is related not only
to the training language but also to the induction
biases of the system.

Sources of inductive bias can be broadly cate-
gorised into three classes: data, architecture and
the learning algorithm. There is also some bias as
a result of the interaction between these sources.
Adding one source of bias can e�ect what other
sorts of biases may be added. For example, in
the second series of simulations, changing the er-
ror measure used for learning e�ects the type of
learning algorithms that can be applied. A way
of adding bias to language induction in RNNs is
the choice of training data. Training data may be
manipulated by changing the distribution or order
of strings in the training set. A number of results
indicate that it is advisable to bias RNNs by using
shorter strings early in training [3].

Ideally, adding biases to a system should improve

the performance of learning. Improvement may be
realised by an increase in e�ciency : the amount
of training required to �nd a solution; reliability :
the regularity with which a successful network is
induced; or consistency : whether or not continued
training improves performance on the task.

This study investigates the e�ect of adding bi-
ases to a network learning a context-free task: pre-
diction of the next letter in a sequence from the
language anbn. The solution to this task is well
understood [5, 7]. Learning this task with back-
propagation through time appears to be ine�cient,
unreliable and particularly inconsistent [6]. With
this previous result in mind we consider two ways of
biasing our system and examine the resulting e�ects
on learning performance.

2. Backpropagation Through Time

2.1. Issues

The standard backpropagation through time algo-
rithm (BPTT) [8] is not particularly e�ective at
inducing a network that performs the anbn predic-
tion task. It typically fails to �nd a solution in
a reasonable amount of time [7], and any solution
that is found is lost with further training [6]. Con-
sequently, we consider mechanisms to bias learning
towards �nding desirable solutions.

One possible way of adding bias to learning is to
simplify the network so that BPTT does not need to

�t as many parameters. Since the architecture we
are using is of close to minimal size, we cannot sim-
ply remove weights. An alternative is to �x some
of the weights by setting them to values found in a
successful network and not modifying them during
training. Rather than �xing random collections of
weights, we choose speci�c groups that contribute
to some property of the dynamics.
By �xing collections of weights, we reduce the

size of the space that BPTT searches. Ideally,
there should be some set of weights to �x that re-
stricts BPTT to searching along smooth directions
of the error surface, improving the consistency and
e�ciency of learning. Additionally, restricting the
search space of BPTT should not prevent it from
�nding a solution | reliability should also be im-
proved.

2.2. Simulation

One network was trained with BPTT on the anbn

prediction task, with n varying from 1 to 10. At a
point where the network successfully performed the
task for all of the training strings and generalised
to n = 11 and n = 12, the weights of the network
were saved. Subsequent networks had some of their
weights �xed to these values, shown in �gure 1.
This network displayed dynamics similar to those
shown in �gure 2 (bottom).
Twelve di�erent sets of weights were selected to

be �xed during training. We report the seven most
interesting cases. These seven cases set the follow-
ing weights to values found in a successful network,
and �x them at these values during learning.

1. The weights into and between the hidden units,
and hidden unit biases.

2. The hidden to output weights, and output bi-
ases

(a) only;

(b) and recurrent weights;

(c) and mutual-recurrent weights1;

(d) and self-recurrent weights.

3. The recurrent weights.
4. The non-recurrent weights, and all biases.

For each of these seven conditions, 25 or 50 net-
works were trained with a sequence of 10000 strings
from the language anbn, with more shorter strings
than longer strings. Training strings were between
2 (n = 1) and 20 (n = 10) characters long. After
each string in the sequence had been presented, the
weights of the network were saved and the perfor-
mance of the network tested for n varying from 1
to 12. This process yields 10000 test points during
training.

1From the �rst hidden unit to the second, and vice-versa.

1.45

-8.10 -7.34 9.05
5.17

-6.61

-1.450.408
-10.4

-0.408 10.4

-3.41

-0.332-1.75

11.7

-6.69 -6.69 11.7

-3.41

-1.451.45

-6.61

-10.4
0.408

-0.40810.4

Fig. 1: The weights of the successful network and the train-
ing condition where the output unit weights and biases and
the recurrent weights are �xed.

The weights of the network that were not �xed
were initialised to random values between -1 and
1. A learning rate of 0.05 and a momentum term
of 0.3 were applied during learning. Nine copies of
the hidden units were maintained by the algorithm.
These parameters are identical to those used in [6].
The consistency of learning is characterised by

the number of these tests on which the network is
able to predict all 12 test strings. Similarly, we
measure the e�ciency of learning by the number
of strings presented before the �rst successful test.
The number of networks that ever give a positive
test result indicates the reliability of learning.

2.3. Results

Table 1 shows how successful BPTT was under each
of the �xed weight conditions, as well as the results
reported in [6] when no weights were �xed.

Fixed Nets % Success Correct Fastest

Weights (Reliability) (Consist.) (Effic.)

None 100 13 20 � 5000
Hidden Unit 50 44 44 70
Output Unit 50 52 85 2092
& Rec. 50 0 | |
& Mut-Rec. 25 0 | |
& Self-Rec. 25 96 23 540
Non-Rec. 25 48 94 5440
Recurrent 50 0 | |

Table: 1: Results of simulations. Listed are the tied weights,

the number of networks trained, the percentage of the
trained networks that were successful, the maximum num-
ber of times a network tested correctly, and the minimum

number of strings required before a network tested correctly.

Not surprisingly, the case where all hidden unit
weights were �xed (case 1) found solutions very
quickly (70 compared to �5000 strings). In this
situation only the output hyperplanes are learned.
However, the network was unable to maintain the
solution, with the hyperplane often misclassifying
the longer strings. We believe that this result is a

consequence of the distribution of strings, with the
greater proportion of shorter strings tending to pull
the hyperplane closer to the \b" saddle point.

The `dual' to this network is the one with only
the weights into the output units �xed (case 2a).
The networks trained under these conditions were
more successful and still signi�cantly faster than
the \standard" case. Learning with these biases
was comparably reliable and more consistent than
the `dual' condition, though not as e�cient. Given
this success, we expected that �xing the output hy-
perplanes as well as some of the recurrent weights
would have improved the performance of BPTT
further. However, when in addition to the output
hyperplanes, all of the recurrent weights (case 2b)
or the mutual recurrent weights (case 2c) were �xed,
BPTT completely failed to �nd a correct network.
Incongruously, �xing the output unit weights and
the self-recurrent weights (case 2d) resulted in a
96% success rate, as well as signi�cantly boosting
the e�ciency of learning, although reducing consis-
tency.
Fixing the non-recurrent weights (case 3) of

the network signi�cantly improved reliability, but
learning was neither consistent nor more e�cient
than the standard case. No network with all recur-
rent weights �xed (case 4) found a solution.

3. Evolutionary Hill Climbing

3.1. Issues

The �rst simulation focused on biasing learning by
restricting the search space. In a second series of
simulations, we consider an alternative method of
adding bias by changing the error measure used
during learning. BPTT performs pseudo-gradient
descent on the mean squared error (MSE) of the
network, whereas the performance of the network
is evaluated by the length of strings that are cor-
rectly predicted based on a 0.5 output threshold.
Consequently, the next series of simulations involve
choosing an error measure that is commensurate
with our method of evaluation, based on the num-
ber of correct strings (NCS). The NCS for a network
is the largest N such that the network can success-
fully predict all strings from n = 1 to n = N .

We used a hill-climbing evolutionary algorithm
(EA) with a two-tier error measure to learn the
task. The �rst discrimination made between two
networks is the NCS measure, with MSE used only
as a secondary discrimination between networks.
The advantage of this algorithm is improved con-
sistency. Since the EA hill-climbs on NCS, it also
hill-climbs on our performance measure.
One possible drawback to using an evolution-

ary algorithm is the e�ciency of the approach.
Whereas BPTT performs a directed search of the

space based on error, an EA searches in a ran-
domised fashion. For this reason we expected the
EA to require a considerable amount of time to �nd
solutions.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H
U

2
A

ct
iv

at
io

n

HU1 Activation

Hidden Unit Trajectories

a region

b region

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H
U

2
A

ct
iv

at
io

n

HU1 Activation

a region

b region

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

HU1 Activation

H
U

2
A

ct
iv

at
io

n

a region

b region

Fig. 2: Hidden unit trajectories and output hyperplane for

a
8
b
8 for the three solution classes. Top: monotonic solution

with signature (2,0); middle: exotic oscillating solution with

signature (1,1); bottom: typical oscillating solution with sig-
nature (0,2).

3.2. Simulation

The network architecture was slightly altered for
this simulation. In order to reduce redundant
weights in the network that would have slowed the
algorithm, only one output unit was used. The
initial network is generated with random weights
chosen from a gaussian distribution with standard
deviation 0.1.
At each generation, a new network is generated

from the current network by adding to each weight a
gaussian random variable with standard deviation

0.01. Suppose the current network can correctly
predict2 all strings anbn for 1 � n � N , but fails for
n = N+1. If the new network can correctly predict
anbn for 1 � n � M , with M > N , then replace
the current network with the new one. If the new
network can correctly predict anbn for 1 � n � N ,
calculate the mean squared error it accrues while
processing aN+1bN+1. If this error is lower for the
new network than the current network, replace the
current network with the new one.
In preliminary training, we ran this algorithm

three times, and found that in each case it was able
to �nd a solution achieving depth greater than 30.
Once the depth reaches about 15, it typically begins
to jump by 2 or 3 at a time. This phenomenon can
be considered as a form of generalisation. Although
the network is being evolved to the next largest
string, it is generalising to even longer strings.
One of these networks found an oscillating solu-

tion (�gure 2 bottom) of the kind commonly pro-
duced by backpropagation [7]. One found a mono-
tonic solution which counts by using two attractors
rather than an attractor and a saddle point (�gure 2
top). Solutions of this kind had been found by back-
propagation, but typically were unable to generalise
to longer strings [5]. It is interesting, therefore, that
this monotonic network demonstrated considerable
capacity for generalisation.
The third run (actually a slight variant of the

above algorithm) produced an unusual solution of a
kind that had not previously been observed (�gure
2 middle). In this network, \counting" of both the
as and bs is performed by the same hidden unit,
with the other unit used to \switch mode".

3.2.1. Actual Trials

To test the reliability of this algorithm,we then per-
formed 50 more runs for 100,000 generations each.3

The average number of strings tested per generation
was 5:7 . The average length of each string tested
was 9:3 .
A run was de�ned as \successful" if it achieved

depth 12 within 100,000 generations.
The weight sets produced by this algorithm can

be classi�ed according to the signature (p; q) of the
recurrent weights, where p and q are the number
of positive and negative self-weights, respectively.
Networks with signature (0; 2) always exhibited os-
cillating behaviour, while those with signature (2; 0)
were monotonic in nature. Of those with signature
(1; 1) about half were oscillating and half mono-
tonic. The exotic solution of �gure 2 (middle) also
had signature (1; 1).

2Excluding the non-deterministic step.
3This number of generations was selected to be compa-

rable to the number of weight updates made by BPTT on
10000 strings.

3.3. Results

Eighteen of �fty runs found networks with NCS �
12. Of the 50 �nal networks, 5 failed to predict any
strings correctly, consequently did not produce any
output and were not classi�ed. The performance of
the EA is summarised in table 2.

signature unsuccessful successful total
(2,0) 2 11 13
(0,2) 15 6 21
(1,1) 10 1 11
| 5 0 5
total 32 18 50

Table: 2: Success of the evolutionary algorithm at inducing
correct networks. The algorithms is judged to be successful
if it induces a network that can correctly perform the pre-
diction task for n varying from 1 to 12. For the purposes
of this table, the signature of a network is taken from the
network at the �nal generation.

As table 2 shows, networks with signature (2; 0)
were most likely to be successful, those with signa-
ture (1; 1) least likely. Figure 3 plots the average
depth as a function of generation, grouped by sig-
nature.

0

2

4

6

8

10

12

14

16

18

20

0 20000 40000 60000 80000 100000

A
ve

ra
ge

 D
ep

th

Generation

exotic: (1,1)

typical oscillating: (0,2)

monotonic: (2,0)

Evolutionary Algorithm Efficiency for Three Solution Classes

Fig. 3: E�ciency of the algorithm at inducing correct net-
works for each of the three solution classes. Note that the
plots are not always increasing because the signature occa-
sionally changes during the course of a run.

4. Discussion

The two groups of simulations explored the e�ects
of adding bias on learning performance on the anbn

prediction task. The �rst series of simulations bi-
ased learning by restricting the search space in dif-
ferent ways and found that there was no simple
relationship between the �xed weights and learning
performance. When the output unit weights and bi-
ases were �xed, BPTT found a solution around 50%
of the time (compared with 13% in the unrestricted
case). Additionally �xing the self-recurrent weights

resulted in near-perfect reliability, but when all re-
current weights were �xed, BPTT never found a
solution. The dramatic change in performance may
be a result of preventing BPTT from searching in
necessary regions of the space. Overall, the per-
formance of BPTT proved to be very sensitive to
restrictions to the search space.
The performance of the evolutionary hill-

climbing algorithm was somewhat surprising. Not
only did the algorithm �nd solutions within a num-
ber of weight updates comparable to BPTT, but
the best trials found solutions that could perform
the task for very long strings | indeed the best so-
lutions we have found yet (up to n = 53). Further-
more, the evolutionary algorithm found not only
the monotonic solution that BPTT does not �nd
very easily [5], but a solution that BPTT has never
found. In contrast to BPTT, the evolutionary al-
gorithm seems to have a preference for monotonic
solutions, inducing more successful networks of this
type than successful oscillating networks.
The most surprising �nding of the simulations

was the way in which the evolutionary algorithm
generalised. Networks with both oscillating and
monotonic dynamics often increased their depth of
processing by more than one string in a single gen-
eration. In one case a single update improved the
performance of a monotonic network from n = 33 to
n = 45. Since the error measure used by the algo-
rithm is aimed speci�cally at only the next longest
string, there seems to be some bias inherent in the
network towards inducing longer strings.

5. Conclusions

Not surprisingly, our simulations have shown that
adding bias to a system has an impact on learn-
ing. However the extent of this impact is somewhat
surprising. The �rst series of simulations demon-
strated that applying two seemingly similar biases
could result in near-perfect reliability or failure to
�nd any solutions. From this we gather that learn-
ing is particularly sensitive to biases.
Another unexpected result was that the hill-

climbing algorithm induced successful monotonic
networks unlike BPTT. Indeed, the EA actu-
ally appeared biased towards �nding this solution,
with more successful networks displaying mono-
tonic rather than oscillating dynamics. In light of
this result, one can see how RNNs may be biased to-
wards inducing non-DFA-like dynamics even when
trained on regular languages [1].
This possibility is given even more credence by

the �nding that the evolutionary hill-climbing algo-
rithm was capable of generalisation. The way that
generalisation occurs | in a context-free manner|
suggests that RNNs may be biased towards �nding
solutions that are not analogous to DFA computa-

tion.
The simulations detailed in this paper are part

of work in progress. One of the �xed-weight condi-
tions signi�cantly improved reliability, and others
improved e�ciency. Furthermore, the EA was able
to learn consistently, unlike BPTT. Although no
single bias improved the reliability, e�ciency and
consistency of learning, the individual biases gave
signi�cant clues as to what makes an e�ective bias.
Based on these clues we seek biases that improve
all three measure of learning performance.

Acknowledgements

This work was supported by an APA to Brad
Tonkes, a UQ Postdoctoral Fellowship to Alan
Blair, an ARC grant to Janet Wiles, and by the
CSEE department.

References

[1] A. Blair and J. Pollack. Analysis of dynamical
recognizers. Neural Computation, 9(5):1127 {
1142, 1997.

[2] M. Casey. The dynamics of discrete-time com-
putation, with application to recurrent nerual
networks and �nite state machine extraction.
Neural Computation, 8(6):1135 { 1178, 1996.

[3] J. Elman. Learning and development in neu-
ral networks: The importance of starting small.
Cognition, 48:71 { 99, 1993.

[4] C.L. Giles, C.B. Miller, D. Chen, H.H. Chen,
G.Z. Sun, and Y.C. Lee. Learning and extract-
ing �nite state automata with second-order re-
current neural networks. Neural Computation,
4(3):393, 1992.

[5] P. Rodriguez, J. Wiles, and J. Elman. A dy-
namical systems analysis of a recurrent neural
network that learns to represent the structure of
a simple context-free language. Under review.

[6] B. Tonkes and J. Wiles. Learning a context-free
task with a recurrent neural network: An anal-
ysis of stability. To appear: Proceedings of the

Fourth Biennial Conference of the Australasian

Cognitive Science Society, 1997.
[7] J. Wiles and J. Elman. Learning to count with-

out a counter: A case study of dynamics and
activation landscapes in recurrent networks. In
Proceedings of the Seventeenth Annual Confer-

ence of the Cognitive Science Society, pages 482
{ 487, Cambridge, MA, 1995. MIT Press.

[8] D. Zipser. Subgrouping reduces compexity and
speeds up learning in recurrent networks. In
D.S. Touretzky, editor, Advances in Neural In-

formation Processing Systems II, pages 638 {
641. Morgan Kaufmann Publishers, 1990.

